
Stochastic Encoders 

Stochastic encoders are a class of neural networks designed to model the uncertainty in the 

encoding process by introducing randomness into the latent representation of the data. They 

aim to generate a probabilistic distribution over the latent space instead of just a 

deterministic point. 

The most common framework that utilizes a stochastic encoder is the Variational 

Autoencoder (VAE), which introduces a probabilistic approach to autoencoding. 

How Stochastic Encoders Work: 

1. Encoder: In a typical autoencoder, the encoder maps the input xxx to a latent 

representation zzz, which is a deterministic vector. However, in a stochastic encoder, 

instead of outputting a single latent code zzz, the encoder outputs the parameters of a 

probability distribution. 

For example, the encoder in a stochastic autoencoder (e.g., a VAE) typically outputs the 

mean μ\muμ and variance σ2\sigma^2σ2 (or the log-variance) of a Gaussian distribution. 

The latent representation zzz is then sampled from this distribution. 

Mathematically: 

q(z∣x)=N(z∣μ(x),σ2(x))q(z|x) = \mathcal{N}(z | \mu(x), \sigma^2(x))q(z∣x)=N(z∣μ(x),σ2(x)) 

Where: 

o q(z∣x)q(z|x)q(z∣x) is the probability distribution over the latent variables given 

the input xxx. 

o μ(x)\mu(x)μ(x) and σ2(x)\sigma^2(x)σ2(x) are the mean and variance of the 

Gaussian distribution generated by the encoder. 

2. Latent Space Sampling: Once the mean and variance are produced by the encoder, 

the latent variable zzz is sampled from the distribution q(z∣x)q(z|x)q(z∣x), introducing 

randomness into the encoding process. This stochastic sampling allows the 

autoencoder to capture the uncertainty and variability in the data. 

This is typically done using the reparameterization trick, where instead of directly 

sampling from q(z∣x)q(z|x)q(z∣x), the latent variable zzz is constructed as: 

z=μ(x)+σ(x)⋅ϵz = \mu(x) + \sigma(x) \cdot \epsilonz=μ(x)+σ(x)⋅ϵ 

Where ϵ∼N(0,I)\epsilon \sim \mathcal{N}(0, I)ϵ∼N(0,I) is a standard Gaussian noise vector. 

This makes the process differentiable, which is necessary for training with backpropagation. 

3. Decoder: The decoder then takes the latent representation zzz (which is a sample 

from the probability distribution) and tries to reconstruct the original input xxx. 

4. Loss Function: The training objective of a stochastic encoder typically combines a 

reconstruction loss (like Mean Squared Error or Cross-Entropy) and a 

regularization term that forces the distribution of the latent variables to be close to a 

known prior distribution (usually a standard Gaussian). The KL divergence between 



the learned distribution q(z∣x)q(z|x)q(z∣x) and the prior distribution p(z)p(z)p(z) is 

used for regularization. 

The loss function for a Variational Autoencoder (VAE) is: 

LVAE=Eq(z∣x)[−logp(x∣z)]+DKL(q(z∣x)∣∣p(z))\mathcal{L}_{VAE} = 

\mathbb{E}_{q(z|x)} \left[ -\log p(x|z) \right] + D_{KL}(q(z|x) || p(z))LVAE=Eq(z∣x)

[−logp(x∣z)]+DKL(q(z∣x)∣∣p(z)) 

Where: 

o −logp(x∣z)-\log p(x|z)−logp(x∣z) is the reconstruction loss. 

o DKL(q(z∣x)∣∣p(z))D_{KL}(q(z|x) || p(z))DKL(q(z∣x)∣∣p(z)) is the Kullback-

Leibler divergence, which regularizes the latent space to follow the prior 

distribution p(z)p(z)p(z). 

Advantages of Stochastic Encoders: 

1. Better Generalization: The stochastic nature of encoding allows the model to better 

generalize to unseen data by learning a distribution over possible latent 

representations. 

2. Generative Modeling: The ability to sample from the latent space allows the model 

to generate new, plausible data points by sampling different latent codes and decoding 

them back into data. 

3. Uncertainty Estimation: Stochastic encoders can model the uncertainty in the data, 

which is useful in applications like probabilistic prediction and exploration. 

 

Contractive Encoders 

Contractive encoders are a type of autoencoder designed to encourage the learned 

representation (latent code) to be robust and stable with respect to small changes in the 

input. This is achieved by adding a regularization term to the loss function that penalizes 

large changes in the hidden representations relative to small perturbations in the input. 

The goal of contractive regularization is to make the encoding of the data contract in 

response to small variations in the input. This helps prevent overfitting and encourages the 

model to learn more meaningful, stable features. 

How Contractive Encoders Work: 

1. Encoder and Decoder: The structure of the encoder and decoder in a contractive 

autoencoder is similar to a standard autoencoder. The encoder maps the input xxx to a 

latent code zzz, and the decoder tries to reconstruct the input from the latent code. 

However, the encoder is regularized to be more stable and robust. 

2. Regularization Term: The key idea of contractive autoencoders is to add a 

regularization term that penalizes the Jacobian matrix of the encoder. The Jacobian 

matrix represents how much each element of the hidden representation changes with 

respect to changes in the input. 



Mathematically, the contractive penalty term is: 

Lcontractive=∣∣x−x^∣∣2+λ∑i,j(∂hi∂xj)2\mathcal{L}_{\text{contractive}} = || x - \hat{x} ||^2 

+ \lambda \sum_{i,j} \left( \frac{\partial h_i}{\partial x_j} \right)^2Lcontractive

=∣∣x−x^∣∣2+λi,j∑(∂xj∂hi)2 

Where: 

o ∂hi∂xj\frac{\partial h_i}{\partial x_j}∂xj∂hi is the partial derivative of the iii-

th hidden unit with respect to the jjj-th input feature. It measures the sensitivity 

of the hidden unit's activation to changes in the input. 

o λ\lambdaλ is a regularization parameter that controls the strength of the 

contractive penalty. 

3. Penalty Explanation: The penalty term ∑i,j(∂hi∂xj)2\sum_{i,j} \left( \frac{\partial 

h_i}{\partial x_j} \right)^2∑i,j(∂xj∂hi)2 encourages the model to learn representations 

that are less sensitive to small perturbations in the input. This regularization helps the 

model learn robust features that are not overly sensitive to small noise or variations 

in the input data. 

4. Training: The training objective in a contractive autoencoder is to minimize the 

reconstruction error, while also minimizing the contractive regularization term. This 

forces the encoder to learn features that are stable and generalizable. 

Advantages of Contractive Encoders: 

1. Improved Generalization: By discouraging the model from learning overly sensitive 

or fragile representations, contractive autoencoders tend to generalize better on 

unseen data. 

2. Robust Features: The regularization forces the model to learn features that are more 

invariant to small changes in the input, which can be useful for tasks where small 

variations in the data should not affect the output significantly. 

3. Noise Resistance: Contractive autoencoders are less likely to overfit to noisy data, as 

they focus on learning stable features rather than being sensitive to every small 

fluctuation in the input. 

 

Comparison: Stochastic vs. Contractive Encoders 

1. Purpose: 

o Stochastic encoders introduce randomness in the encoding process to model 

uncertainty and variability in the data. This is especially useful in generative 

models and when capturing uncertainty. 

o Contractive encoders focus on learning robust, stable representations by 

penalizing large changes in the hidden representation with respect to small 

changes in the input. This helps prevent overfitting and ensures that the 

features learned are more generalizable. 



2. Regularization: 

o In stochastic encoders (e.g., VAEs), regularization is done through the KL-

divergence term, which encourages the latent space to follow a known prior 

distribution (e.g., a standard normal distribution). 

o In contractive encoders, regularization is done through the contractive 

penalty, which encourages the hidden representations to be insensitive to 

small perturbations in the input data. 

3. Generative vs. Robust Features: 

o Stochastic encoders are well-suited for generative tasks like data generation, 

sampling, and modeling uncertainty. 

o Contractive encoders are better suited for tasks where robustness and 

generalization to noisy or variable data are important. 

 

Conclusion 

• Stochastic encoders (e.g., in Variational Autoencoders) introduce randomness into 

the encoding process, enabling the model to learn probabilistic distributions over the 

latent space. This approach is useful for generative tasks, uncertainty estimation, and 

learning representations that capture the variability in the data. 

• Contractive encoders add a regularization term that penalizes large changes in the 

hidden representations with respect to small changes in the input. This encourages the 

model to learn stable, robust features that generalize better and are less sensitive to 

noise, which is useful for tasks requiring noise resistance and generalization. 

 


