UNIT- III

ANALYTIC FUNCTIONS

INTRODUCTION

The theory of functions of a complex variable is the most important in solving a large number of Engineering and Science problems. Many complicated integrals of real function are solved with the help of a complex variable.

Complex Variable

$x+i y$ is a complex variable and it is denoted by z.
(i.e.) $z=x+$ iy where $i=\sqrt{-1}$

Function of a complex Variable
If $z=x+i y$ and $w=u+i v$ are two complex variables, and if for each value of z in a given region R of complex plane there corresponds one or more values of w is said to be a function z and is denoted by $w=f(z)=f(x+i y)=$ $u(x, y)+i v(x, y)$ where $u(x, y)$ and $v(x, y)$ are real functions of the real variables x and y.

Note:

(i) single-valued function

If for each value of z in R there is correspondingly only one value of w, then w is called a single valued function of z.

Example: $w=z^{2}, w=\frac{1}{z}$

$w=z^{2}$					$w=\frac{1}{z}$					
z	1	2	-2	3	z	1	2	-2	3	
w	1	4	4	9	w	1	$\frac{1}{2}$	$\frac{1}{-2}$	$\frac{1}{3}$	

(ii) Multiple - valued function

If there is more than one value of w corresponding to a given value of z then w is called multiple - valued function.

Example: $w=z^{1 / 2}$

	$\frac{2}{3}$	$w=z^{1 / 2}$		0

(iii) The distance between two points z and z_{o} is $\left|z-z_{o}\right|$
(iv)The circle C of radius δ with centre at the point z_{o} can be represented by $\left|z-z_{o}\right|=\delta$.
(v) $\left|z-z_{o}\right|<\delta$ represents the interior of the circle excluding its circumference.
(vi) $\left|z-z_{o}\right| \leq \delta$ represents the interior of the circle including its circumference.
(vii) $\left|z-z_{o}\right|>\delta$ represents the exterior of the circle.
(viii) A circle of radius 1 with centre at origin can be represented by $|z|=1$

Neighbourhood of a point z_{o}

Neighbourhood of a point z_{o}, we mean a sufficiently small circular region [excluding the points on the boundary] with centre at z_{o}.

$$
\text { (i.e.) }\left|z-z_{o}\right|<\delta
$$

Here, δ is an arbitrary small positive number.

Limit of a Function

Let $f(z)$ be a single valued function defined at all points in some neighbourhood of point z_{o}.

Then the limit of $f(z)$ as z approaches z_{o} is w_{o}.

$$
\text { (i.e.) } \lim _{z \rightarrow z_{o}} f(z)=w_{o}
$$

Continuity

If $f(z)$ is said to continuous at $z=z_{o}$ then

$$
\lim _{x \rightarrow z_{o}} f(z)=f\left(z_{o}\right)
$$

If two functions are continuous at a point their sum, difference and product are also continuous at that point, their quotient is also continuous at any such point $[d r \neq 0]$

Example: 1 State the basic difference between the limit of a function of a real variable and that of a complex variable. [A.U M/J 2012]

Solution:

In real variable, $x \rightarrow x_{0}$ implies that x approaches x_{0} along the X -axis (or) a line parallel to the

X -axis.

In complex variables, $z \rightarrow z_{0}$ implies that z approaches z_{0} along any path joining the points z and z_{0} that lie in the z-plane.

Differentiability at a point

A function $f(z)$ is said to be differentiable at a point, $z=z_{0}$ if the limit

$$
f\left(z_{0}\right)=\operatorname{Lt}_{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \text { exists. }
$$

This limit is called the derivative of $f(z)$ at the point $z=z_{0}$
If $f(z)$ is differentiable at z_{0}, then $f(z)$ is continuous at z_{0}. This is the necessary condition for differentiability.

Example: 2 If $f(z)$ is differentiable at z_{0}, then show that it is continuous at

that point.

Solution:

As $f(z)$ is differentiable at z_{0}, both $f\left(z_{0}\right)$ and $f^{\prime}\left(z_{0}\right)$ exist finitely.

$$
\text { Now, } \lim _{z \rightarrow z_{o}}\left|f(z)-f\left(z_{o}\right)\right|=\lim _{z \rightarrow z_{o}} \frac{f(z)-f\left(z_{o}\right)}{z-z_{0}}\left(z-z_{0}\right) .
$$

Hence, $\lim _{z \rightarrow z_{o}} f(z)=\lim _{z \rightarrow z_{o}} f\left(z_{o}\right)=f\left(z_{o}\right)$

As $f\left(z_{0}\right)$ is a constant.
This is exactly the statement of continuity of $f(z)$ at z_{0}.

Example: 3 Give an example to show that continuity of a function at a point

 does not imply the existence of derivative at that point.
Solution:

Consider the function $w=|z|^{2}=x^{2}+y^{2}$
This function is continuous at every point in the plane, being a continuous
function of two real variables. However, this is not differentiable at any point other than origin.

Example: 4 Show that the function $f(z)$ is discontinuous at $z=0$, given that
$f(z)=\frac{2 x y^{2}}{x^{2}+3 y^{4}}$, when $z \neq 0$ and $f(0)=0$.

Solution:

Given $f(z)=\frac{2 x y^{2}}{x^{2}+3 y^{4}}$,
Consider $\lim _{z \rightarrow z_{o}}[f(z)]=\lim _{\substack{y=m x \\ x \rightarrow 0}}[f(z)]=\lim _{x \rightarrow 0} \frac{2 x(m x)^{2}}{x^{2}+3(m x)^{4}}=\lim _{x \rightarrow 0}\left[\frac{2 m^{2} x}{1+3 m^{4} x^{2}}\right]=0$

$$
\lim _{\substack{y^{2}=x \\ x \rightarrow 0}}[f(z)]=\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}+3 x^{2}}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{4 x^{2}}=\frac{2}{4}=\frac{1}{2} \neq 0
$$

$\therefore f(z)$ is discontinuous

Example: 5 Show that the function $f(z)$ is discontinuous at the origin $(z=0)$, given that

$$
\begin{aligned}
f(z) & =\frac{x y(x-2 y)}{x^{3}+y^{3}}, \text { when } z \neq 0 \\
& =0 \quad, \text { when } z=0
\end{aligned}
$$

Solution:

$$
\begin{gathered}
\text { Consider } \lim _{z \rightarrow z_{o}}[f(z)]=\lim _{\substack{y=m x \\
x \rightarrow 0}}[f(z)]=\lim _{x \rightarrow 0} \frac{x(m x)(x-2(m x))}{x^{3}+(m x)^{3}} \\
=\lim _{x \rightarrow 0} \frac{m(1-2 m) x^{3}}{\left(1+m^{3}\right) x^{3}}=\frac{m(1-2 m)}{1+m^{3}}
\end{gathered}
$$

Thus $\lim _{z \rightarrow 0} f(z)$ depends on the value of m and hence does not take a unique value.
$\therefore \lim _{z \rightarrow 0} f(z)$ does not exist.
$\therefore f(z)$ is discontinuous at the origin.

