
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Double Ended Queue (Dequeue)

Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are performed at

both the ends (front and rear). That means, we can insert at both front and rear positions and can delete from both

front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows... Input Restricted Double Ended Queue

 Output Restricted Double Ended Queue

 Input Restricted Double Ended Queue

Input restricted double ended queue

In input restricted double ended queue, the insertion operation is performed at only one end and deletion operation

is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end and insertion

operation is performed at both the ends.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Program

#include<stdio.h>

#include<conio.h>

#define SIZE 100

void enQueue(int);

int deQueueFront();

int deQueueRear();

void enQueueRear(int);

void enQueueFront(int);

void display();

int queue[SIZE];

int rear = 0, front = 0;

int main()

{

char ch;

int choice1, choice2, value;

printf("\n******* Type of Double Ended Queue *******\n");

do

{

printf("\n1.Input-restricted deque \n");

printf("2.output-restricted deque \n");

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

printf("\nEnter your choice of Queue Type : "); scanf("%d",&choice1);

switch(choice1)

{

case 1:

printf("\nSelect the Operation\n");

printf("1.Insert\n2.Delete from Rear\n3.Delete from Front\n4. Display");

do

{

printf("\nEnter your choice for the operation in c deque: ");

scanf("%d",&choice2);

switch(choice2)

{

case 1:

enQueueRear(value);

display();

break;

case 2:

value = deQueueRear();

printf("\nThe value deleted is %d",value);

display();

break;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

case 3:

value=deQueueFront();

printf("\nThe value deleted is %d",value);

display();

break;

case 4: display();

break;

default:printf("Wrong choice");

}

printf("\nDo you want to perform another operation (Y/N): ");

ch=getch();

getch();

 }while(ch=='y'||ch=='Y');

break;

case 2 :

printf("\n---- Select the Operation---- \n");

printf("1. Insert at Rear\n2. Insert at Front\n3. Delete\n4. Display");

do

{

printf("\nEnter your choice for the operation: ");

scanf("%d",&choice2);

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

switch(choice2)

{

case 1:

enQueueRear(value);

display();

break;

case 2:

enQueueFront(value);

display();

break;

case 3:

value = deQueueFront();

printf("\nThe value deleted is %d",value);

display();

break;

case 4: display();

break;

default:printf("Wrong choice");

}

printf("\nDo you want to perform another operation (Y/N): ");

ch=getch();

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

getch();

}

 } while(ch=='y'||ch=='Y');

break ;

printf("\nDo you want to continue(y/n):");

ch=getch();

}while(ch=='y'||ch=='Y');

}

void enQueueRear(int value)

{

char ch;

if(front == SIZE/2)

{

printf("\nQueue is full!!! Insertion is not possible!!! ");

return;

}

do

{

printf("\nEnter the value to be inserted:");

scanf("%d",&value); queue[front] = value;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

front++;

printf("Do you want to continue insertion Y/N");

ch=getch();

}while(ch=='y');

}

void enQueueFront(int value)

{

char ch;

if(front==SIZE/2)

{

printf("\nQueue is full!!! Insertion is not possible!!!");

return;

}

do

{

printf("\nEnter the value to be inserted:");

scanf("%d",&value);

rear--;

queue[rear] = value;

printf("Do you want to continue insertion Y/N");

ch = getch();

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

}

while(ch == 'y');

}

int deQueueRear()

{

int deleted;

if(front == rear)

{

printf("\nQueue is Empty!!! Deletion is not possible!!!");

return 0;

}

front--;

deleted = queue[front+1];

return deleted;

}

int deQueueFront()

{

int deleted;

if(front == rear)

{

printf("\nQueue is Empty!!! Deletion is not possible!!!");

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

return 0;

}

rear++;

deleted = queue[rear-1];

return deleted;

}

void display()

{

inti;

if(front == rear)

printf("\nQueue is Empty!!! Deletion is not possible!!!")

else{

printf("\nThe Queue elements are:");

for(i=rear; i< front; i++)

{

printf("%d\t ",queue[i]);

}

}

}

