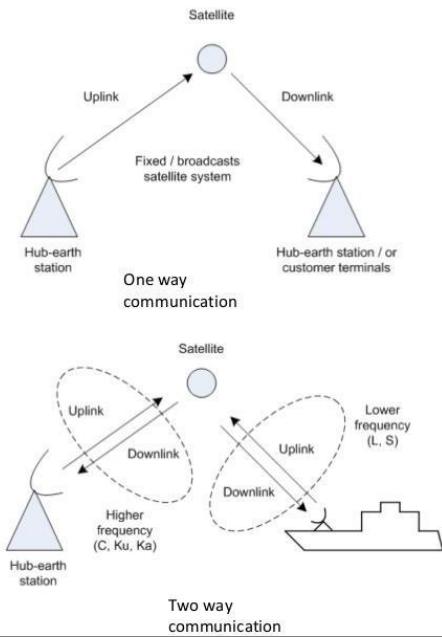


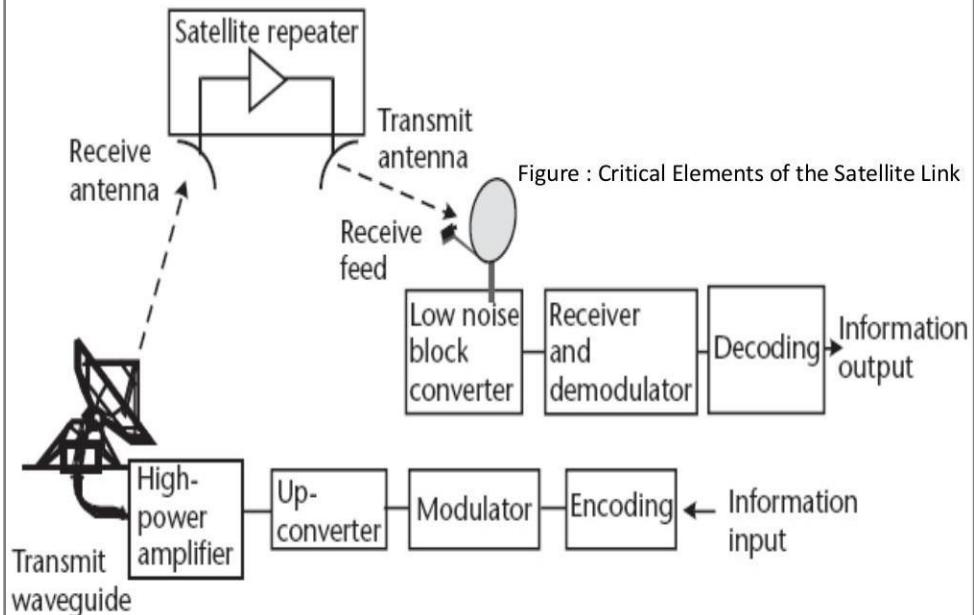
LINK DESIGN WITH AND WITHOUT FREQUENCY

In satellite communication systems, there are two types of power calculations. Those are transmitting power and receiving power calculations. In general, these calculations are called as Link budget calculations.

The unit of power is decibel.out


Satellite Link Design

The four factors related to satellite system design:


1. The weight of satellite
2. The choice frequency band
3. Atmospheric propagation effects
4. Multiple access technique
 - ❖ The major frequency bands are 6/4 GHz, 14/11 GHz and 30/20 GHz (Uplink/Downlink)
 - ❖ At geostationary orbit there is already satellites using both 6/4 and 14/11 GHz every 2° (minimum space to avoid interference from uplink earth stations)

Objective of a link analysis

- Link analysis determines properties of satellite equipment (antennas, amplifiers, data rate, etc.)
- Two links need to be planned
 - Uplink – from ground to satellite
 - Downlink – from satellite to ground
- Two way communication – 4 links (two way maritime communications)
- One way communication – 2 links (example – TV broadcast)
- Two links are not at the same frequency
- Two links may or may not be in the same band
 - Fixed / broadcast satellite services – usually same band
 - Mobile satellite services may use different bands
- In some systems satellite links may be combined with terrestrial returns

Design of the Satellite Link

First, let us discuss the basic terminology used in Link Budget and then we will move onto explain Link Budget calculations.

3.11.1 Basic Terminology

An isotropic radiator (antenna) radiates equally in all directions. But, it doesn't exist practically. It is just a theoretical antenna. We can compare the performance of all real (practical) antennas with respect to this antenna.

3.11.1.1 Power flux density

Assume an isotropic radiator is situated at the center of the sphere having radius, r . We know that power flux density is the ratio of power flow and unit area.

Power flux density, Ψ_i of an isotropic radiator is

$$\Psi_i = P_s 4\pi r^2$$

Where, P_s is the power flow. In general, the power flux density of a practical antenna varies with direction. But, its maximum value will be in one particular direction only.

3.11.1.2 Antenna Gain

The gain of practical antenna is defined as the ratio of maximum power flux density of practical antenna and power flux density of isotropic antenna.

Therefore, the Gain of Antenna or Antenna gain, G is

$$G = \frac{\Psi_m}{\Psi_i}$$

Where, Ψ_m is the maximum power flux density of practical antenna. And, Ψ_i is the power flux density of isotropic radiator (antenna).

3.11.1.3 Equivalent Isotropic Radiated Power

Equivalent isotropic radiated power (EIRP) is the main parameter that is used in measurement of link budget.

Mathematically, it can be written as

$$\text{EIRP} = \text{GPs} \cdot \text{EIRP} = \text{GPs}$$

We can represent EIRP in decibels as

$$[\text{EIRP}] = [\text{G}] + [\text{Ps}] \text{dBW}$$

Where, G is the Gain of Transmitting antenna and Ps is the power of transmitter.

3.11.1.4 Transmission Losses

The difference between the power sent at one end and received at the receiving station is known as

Transmission losses. The losses can be categorized into 2 types.

- Constant losses
- Variable losses

The losses which are constant such as feeder losses are known as constant losses. No matter what precautions we might have taken, still these losses are bound to occur.

Another type of losses are variable losses. The sky and weather condition is an example of this type of loss. Means if the sky is not clear signal will not reach effectively to the satellite or vice versa.

Therefore, our procedure includes the calculation of losses due to clear weather or clear sky condition as 1st because these losses are constant. They will not change with time. Then in 2nd step, we can calculate the losses due to foul weather condition.

