UNIT III NOSQL DATABASES 9

NoSQL — CAP Theorem — Sharding - Document based — MongoDB Operation:
Insert, Update, Delete, Query, Indexing, Application, Replication, Sharding—Cassandra:
Data Model, Key Space, Table Operations, CRUD Operations, CQL Types — HIVE: Data
types, Database Operations, Partitioning — HiveQL — OrientDB Graph database —
OrientDB Features

MongoDB Operation:

MongoDB is an open-source document database that provides high performance,
high availability, and automatic scaling. MongoDB is a document-oriented database. It is
an open source product, developed and supported by a company named 10gen.
MongoDB is a scalable, open source, high performance, document-oriented database."
MongoDB was designed to work with commodity servers. Now it is used by companies
of all sizes, across all industries.

MongoDB Advantages

e MongoDB is schema less. It is a document database in which one collection holds
different documents.

e There may be differences between the number of fields, content and size of the
document from one to another.
Structure of a single object is clear in MongoDB.
There are no complex joins in MongoDB.
MongoDB provides the facility of deep query because it supports a powerful dynamic
query on documents.
It is very easy to scale.
It uses internal memory for storing working sets and this is the reason of its fast
access.

Distinctive features of MongoDB

e Fasy to use

o Light Weight

e Extremely faster than RDBMS

Where MongoDB should be used

Big and complex data

Mobile and social infrastructure

Content management and delivery

User data management

Data hub

MongoDB Data Types

8.
9.

MongoDB supports many data types. Some of them are:

. String: String is the most commonly used datatype to store the data. It is used

to store words or text. String in MongoDB must be UTF-8 valid.

Integer: This data type is used to store a numerical value. Integer can be 32-bit
or 64-bit depending upon the server.

Boolean: This data type is used to store a Boolean (true/ false) value.

Float: This data type is used to store floating point values.

Min/Max keys: This data type is used to compare a value against the lowest
and highest BSON elements.

Arrays: This data type is used to store arrays or list or multiple values into one
key

Timestamp: This data type is used to store the data and time at which a
particular event occurred. For example, recording when a document has been
modified or added

Object: This datatype is used for embedded documents

Null: This data type is used to store a Null value.

10.Symbol: This datatype is used identically to a string; however, it’s generally

reserved for languages that use a specific symbol type

11.Date: This datatype is used to store the current date or time in UNIX time

format. We can specify our own date time by creating an object of Date and
passing day, month, year into it.

12.0bject ID: This datatype is used to store the document’s ID
13.Binary data: This datatype is used to store binary data.

14.Code: This datatype is used to store JavaScript code into the document.
15.Regular expression: This datatype is used to store regular expressions.

MongoDB Create Database

There is no create database command in MongoDB. Actually, MongoDB does not

provide any command to create a database.
How and when to create database

If there is no existing database, the following command is used to create a new

database.

Syntax:

use DATABASE NAME
INPUT:-

>>>use inventory
OUTPUT:-

switched to db inventory

MongoDB Create Collection
In MongoDB, db.createCollection(name, options) is used to create collections. But
usually it doesn't need to create a collection. MongoDB create collection automatically
when you insert some documents.
Syntax:
db.createCollection(name, options)
Name: is a string type, specifies the name of the collection to be created.
Options: is a document type, specifies the memory size and indexing of the
collection. It is an optional parameter.
Insert Operation:-
It is used to add one or more documents to the collection. It has two types,
insertOne-used to add only one document to the collection.
insertMany-used to add more than one document to the collection.
Syntax:-insertOne():-
db.collection.insertOne(<document>,{ writeConcern: <document> })
SAMPLE QUERY:-
INPUT:-
>>>db.inventory.insertOne({ item: "canvas", qty: 100, tags: ["cotton"], size: { h: 28, w:
35.5, uom: "cm" } })
OUTPUT:-
{
“acknowledge”:true,
“insertedId”:Objectld(“603e3d2f6b88c382606523ad”)
b
Syntax:-
insertMany():-
db.collection.insertMany(
[<document 1>, <document 2>, ...],
{
writeConcern: <document>,
ordered: <boolean>

h

)
SAMPLE QUERY:-

INPUT:-

>>>db.inventory.insertMany(|
{ item: "journal", qty: 25, tags: ["blank", "red"], size: { h: 14, w: 21, uom: "cm" } },
{ item: "mat", qty: 85, tags: ["gray"], size: { h: 27.9, w: 35.5, uom: "cm" } },
{ item: "mousepad", qty: 25, tags: ["gel", "blue"], size: { h: 19, w: 22.85, uom: "cm" } }
D
OUTPUT:-
{
“acknowledge”:true,
“insertedIds”:[Objectld(“603ee5973b41040c0b3227107”),
Objectld(“603ee5973b41040c0b3227108)
Objectld(“603ee5973b41040c0b32271079”)
h
READ OPERATION:-
It is used to retrieve documents from the collection based on some constraints.
Syntax:-
db.collection.find(query, { <field1>: <value>, <field2>: <value> ... })
SAMPLE QUERY:-
INPUT:-
>>>db.inventory.find({})
OUTPUT:
{*_id™: Objectld(*603e3d2f6b88c382606523ad™), " item™: "canvas", “qty™: 100, “tags™:
["cotton"], “size™: { “h™: 28, “w™ 35.5, “uom™: "cm" } }
{ “_1d™:0bjectld(*603ee5973b41040c0b3271077)."item™: "journal”.” gty™: 25, tags™:
["blank", "red"], “size™: { h: 14, w: 21, uom: "cm" } }
* 1d™; Objectld(“603ee5973b4 1040c0b3271087), " item™; "mat", “qty™; 85, tags™; ["gray"],
“gize™ { h: 27.9, w: 35.5, uvom: "em" } }
{ *_1d":0bjectId(“603ee5973b41040c0b32710797),"item™: "mousepad”, “qty™: 25,” tags™:

["gel”, "blue"],” size™: { h: 19, w: 22.85, uom: "cm" }

SAMPLE QUERY:-
INPUT:-
>>>db.inventory.find({qty:85})
OUTPUT:-
{*_1d”: Objectld(*603ee5973b41040c0b327108™), " item™: "mat", “qty™: 85, tags™: ["gray"],

“gize™ { h: 27.9, w: 35.5, uom: "cm" } }

UPDATE OPERATION:-

It is used to modify (add/replace)one or more documents in the collection. It
consists of 3 types:

updateOne

update many
Syntax:-
db.collection.updateOne(<filter>, <update>, <options>)
db.collection.updateMany(<filter>, <update>, <options>)
db.collection.replaceOne(<filter>, <update>, <options>)
SAMPLE QUERY:-updateOne()
INPUT:-
>>>db.inventory.updateOne({ item: "paper" }, { $set: { "size.uom": "cm"},
$currentDate: { lastModified: true } })
OUTPUT:-

OUTPUT:-
"'acknuw]eged":'l'rue
“matchedcount™:0

“maodifiedcount’:0
1
il

SAMPLE QUERY:-updateMany()

INPUT:-

>>>db.inventory.updateMany({ "qty": { $lt: 50 } }, { $set: { "size.uom": "in", status:
"P" }, ScurrentDate: { lastModified: true } })

OUTPUT:-

[}

L}
“acknowleged™: True
“matchedcount™:2

“modifiedcount™:2

1
i

DELETE OPERATION:-
It is used to delete one or more documents/column from the collection based on
the constraints.
Syntax:-
db.collection.deleteMany()
db.collection.deleteOne()
SAMPLE QUERY:-deleteOne()
INPUT:-
>>>db.inventory.deleteOne({ qty:85 })
OUTPUT:-

{

“acknowledged”: True

“deletecount™: 1

b

SAMPLE QUERY:-deleteMany()
INPUT:-

>>>db.inventory.deleteMany({ qty:25 })
OUTPUT:-

{

“acknowledged”: True

“deletecount™:2

}

Indexing in MongoDB :

MongoDB uses indexing in order to make the query processing more efficient. If
there is no indexing, then the MongoDB must scan every document in the collection and
retrieve only those documents that match the query. Indexes are special data structures
that store some information related to the documents such that it becomes easy for
MongoDB to find the right data file. The indexes are ordered by the value of the field
specified in the index.

Creating an Index :

MongoDB provides a method called createIndex() that allows users to create an

index.
Syntax

db.COLLECTION NAME.createlndex({KEY:1})
Example
db.mycol.createIndex({<age=:1})

{

<createdCollectionAutomatically= : false,
<numlIndexesBefore=: 1,
<numlIndexesAfter=": 2,

<ok=:1

b

Dropping an Index :

In order to drop an index, MongoDB provides the dropIndex() method.
Syntax:

db.NAME OF COLLECTION.dropIndex({KEY:1})

The dropIndex() methods can only delete one index at a time. In order to delete (or
drop) multiple indexes from the collection, MongoDB provides the dropIndexes() method
that takes multiple indexes as its parameters.

Example
db.NAME OF COLLECTION.dropIndexes({KEY1:1, KEY2, 1})

Application
1. Web Applications

o MongoDB is widely used across various web applications as the primary data
store.

o One of the most popular web development stacks, the MEAN stack employs
MongoDB as the data store (MEAN stands for MongoDB, ExpressJS,
Angular]S, and NodelS).

2. Big Data

o MongoDB also provides the ability to handle big data.

o Big Data refers to massive data that is fast-changing, can be quickly accessed
and highly available for addressing needs efficiently.

o So, it can be used in applications where Big Data is needed.

3. Demographic and Biometric Data

o MongoDB is one of the biggest biometrics databases in the world. It is used to
store a massive amount of demographic and biometric data.

o For example, India’s Unique Identification project, Aadhar, is using
MongoDB as its database to store a massive amount of demographic and
biometric data of more than 1.2 billion Indians.

4. Synchronization

o MongoDB can easily handle complicated things that need synchronization
with each other entirely.

o So, it is mainly used in gaming applications. An example gaming application
developed using MongoDB as a database 1s “EA”.

o EA is a world-famous gaming studio that is using MongoDB Database for its
game called FIFA Online 3.

5. Ecommerce

o For e-commerce websites and product data management and solutions, we can
use MongoDB to store information because it has a flexible schema well
suited for the job.

o They can also determine the pattern to handle interactions between user’s
shopping carts and inventory using “Inventory Management.”

o MongoDB also has a report called “Category Hierarchy,” which will describe
the techniques to do interaction with category hierarchies in MongoDB.

MongoDB Replication

In MongoDB, data can be replicated across machines by the means of replica sets.

A replica set consists of a primary node together with two or more secondary nodes.
The primary node accepts all write requests, which are propagated asynchronously to
the secondary nodes.

The primary node is determined by an election involving all available nodes.

To be eligible to become primary, a node must be able to contact more than half of the
replica set.

This ensures that if a network partitions a replica set in two, only one of the partitions
will attempt to establish a primary.

The successful primary will be elected based on the number of nodes to which it is in
contact, together with a priority value that may be assigned by the system
administrator.

Setting a priority of 0 to an instance prevents it from ever being elected as primary.

In the event of a tie, the server with the most recent optime — the timestamp of the
last operation—will be selected.

The primary stores information about document changes in a collection within its
local database, called the oplog.

The primary will continuously attempt to apply these changes to secondary instances.
Members within a replica set communicate frequently via heartbeat messages.

If a primary finds it is unable to receive heartbeat messages from more than half of the
secondaries, then it will renounce its primary status and a new election will be called.
Figure illustrates a three-member replica set and shows how a network partition leads
to a change of primary.

Arbiters are special servers that can vote in the primary election, but that don’t hold
data.

For large databases, these arbiters can avoid the necessity of creating unnecessary
extra servers to ensure that a quorum is available when electing a primary.

Master \
. - —~ -
Heartbeat oplog Heartbeat
Replication Replication
Secondary { Secondary
[Heartheat - ‘
/ /
3 instance replica set

{ Secondary

Network Partition

(Secondary f Primary
-ff———o———Replication—————-u--- :
-t Heartbeat - oplog |
Network partition forces election of
new primary

The replication process works as follows:
e Write operations on the primary:

o When a user sends a write operation (such as an insert, update, or delete) to the
primary node, the primary node processes the operation and records it in its oplog

(operations log).
e Oplog replication to secondaries:
o Secondary nodes poll the primary's oplog at regular intervals.

o The oplog contains a chronological record of all the write operations performed.
o The secondary nodes read the oplog entries and apply the same operations to their
data sets in the same order they were executed on the primary node.

e Achieving data consistency:

o Through this oplog-based replication, secondary nodes catch up with the primary's
node data over time.

o This process ensures that the data on secondary nodes remains consistent with the
primary's node data.

e Read operations:

o While primary nodes handle write operations, both primary and secondary nodes
can serve read operations which can help in load balancing.

o Clients can choose to read from secondary nodes, which helps distribute the read
load balance and reduce the primary node's workload.

o But in some instances secondary nodes might have slightly outdated data due to
replication lag.

MongoDB replication provides several benefits

e High Availability: In the event of primary node failure, a secondary node can be
automatically promoted to the primary role, ensuring that the database remains
operational and minimizing downtime.

e Fault Tolerance: Multiple replicas of data reduce the risk of data loss due to
hardware failures or other issues affecting a single node.

e Read Scalability: Secondary nodes can handle read queries, distributing the read
workload and improving overall performance.

e Data Redundancy: Having multiple replicas of data provides a level of data
redundancy, helping protect against data loss.

In summary, MongoDB replication is a critical feature that enhances data
availability and reliability in distributed environments. It enables the maintenance of
synchronized data copies across multiple nodes, allowing for fault tolerance and
improved performance in MongoDB database systems.

Methods to setup MongoDB replication

Setting up MongoDB replication is a crucial step in creating a fault-tolerant and
highly available database environment. MongoDB replication allows you to create
multiple copies of your data across different servers, ensuring data redundancy and fault
tolerance. Here are the methods to set up MongoDB replication
MongoDB replication using replica set

Setting up MongoDB replication using a Replica Set involves several steps. Here
are detailed instructions with code snippets for each step:

Step 1: Prepare MongoDB Instances
Install MongoDB on multiple servers or virtual machines where Replica Set will
be created. You can follow the installation instructions provided in the MongoDB
documentation.
Step 2: Configure Network Settings
Ensure that all the servers can communicate with each other over the network.
Include the hostnames and IP addresses of all Replica Set members by updating them to
the /etc/hosts file or DNS configuration.
Step 3: Start MongoDB Instances
For each server, a MongoDB configuration file needs to be created which will be
saved as mongod.conf file name and written in yaml format type similar to the code
snippet below.
storage:
dbPath: /var/lib/mongodb
journal:
enabled: true
systemLog:
destination: file
path: /var/log/mongodb/mongod.log
logAppend: true
net:
bindlp:
port:
replication:
replSetName: myReplSet
To start MongoDB on each server using the configuration file made above i.e.
mongod.conf file by using the following bash command:
mongod -f /path/to/mongod.conf

Step 4: Initialize the Replica Set

Now we need to connect to any one of the MongoDB instances (which is basically
replica set) created using the bello MongoDB shell command:
mongo --host <hostname>:<port>

Replica Set needs to be initialized now by executing the following command:
rs.initiate(

{ id: "myReplSet", members: |

{_id: 0,host:"<primary_host>:<primary_port>"

H
1y

Step 5: Add Secondary Members

After executing the Replica Set, connect to the primary node using the following
bash command in MongoDB shell:

mongo --host <primary_host>:<primary_port>

Add secondary members using the following Javascript command:

rs.add(":")

Repeat this step for each secondary member.

Step 6: Optional - Add Arbiter Node

If you want to add an arbiter node for elections, connect to the primary node’s
MongoDB shell and execute the following javascript command:

rs.addArb("'<arbiter host>:<arbiter port>")

Step 7: Check Replica Set Status

To check the status of the Replica Set, connect to any of the MongoDB instances
and run the following javascript command:

rs.status()

Step 8: Test Connection Failure

To test connection failure, you can simulate a primary node failure by stopping the
MongoDB instance. The Replica Set should automatically elect a new primary node.
Please note that the provided steps and code snippets are generalized and the actual steps
might require adjustments based on the specific environment and use case. This is where
a near real-time low code tool like fivetran can be leveraged as you just need to connect
MongoDB with it and then Fivetran would handle all the replication tasks without any
hassle.

While MongoDB replication using the replica set method offers numerous
benefits, there are situations where its complexity, resource requirements, or alignment
with specific use cases make it less feasible. Organizations need to carefully assess their
requirements, infrastructure, and operational capabilities to determine whether replica
sets are the appropriate solution or if alternative strategies should be considered.

Sharding

A high-level representation of the MongoDB sharding architecture is shown in
Figure. Each shard is implemented by a distinct MongoDB database, which in most
respects is unaware of its role in the broader sharded server

(1) A separate MongoDB database

(2) the config server — contains the metadata that can be used to determine how
data is distributed across shards.

(3) A router process — responsible for routing requests to the appropriate shard
server.

Database Client

i

2

Router Config Server
(Mongos) (mongod)
1 1 1
Shard 1 Shard 2 Shard 3
(mongod) (mongod) {mongod)

Sharding Mechanisms
Distribution of data across shards can be either range based or hash based.
e Range-based partitioning:

o Each shard is allocated a specific range of shard key values.

o MongoDB consults the distribution of key values in the index to ensure that each
shard is allocated approximately the same number of keys.

o Range-based partitioning allows for more efficient execution of queries that
process ranges of values, since these queries can often be resolved by accessing a
single shard.

o When range partitioning is enabled and the shard key is continuously
incrementing, the load tends to aggregate against only one of the shards, thus
unbalancing the cluster.

e Hash-based sharding:

o The keys are distributed based on a hash function applied to the shard key.

o Hash-based sharding requires that range queries be resolved by accessing all
shards.

o Hash-based sharding is more likely to distribute documents (unfilled orders or
recent posts) evenly across the cluster, thus balancing the load more effectively.
o With hash-based partitioning new documents are distributed evenly across all
members of the cluster
The below Figure illustrates the performance trade-offs inherent in range and hash
sharding for inserts and range queries.

Database Client |

db.ordars. find(I db,.orders.insert ({... .

“orderDate” : today |)

{"orderDate”: {$gt: yesterday)}

Router
\ J
f All new documents
. ~ are created in the
Range queries are optimized i
-) § AN same shard, creating
since they can be satisfied by .
. Y a write bottleneck
a single shard
~
.) N
Shard 1 \ { Shard 2 VN Shard 3
Last Year Last Month Today
Last Year Last Month Today
Last Year Last Month Today
Last Year Last Month Today
Last Year | Last Month | Today

Orders collection sharded by orderDate

[Database Client)

db.orders. find(| fib-ﬂrdsrainutt (... »
{{"orderDate”: {$gt: yesterday)) I ‘orderDate” : today |)

Router

Range queries P !b

require participation
of every s'mrg_,.

Inserts are
distributed evenly
across all shards

&~
e .) N)

Shard 1) Shard 2 Y Shard 3
Today Last Year Last Year
Last Month Today Last Month

Last Year Last Month Today
Today Last Year Last Year
Last Manth Last Manth | Last Maonth

Orders collection sharded by Hashed orderDate

e Tag-aware sharding:

o It allows the MongoDB administrator to fine-tune the distribution of documents to
shards.

o By associating a shard with the tag, and associating a range of keys within a
collection with the same tag, the administrator can explicitly determine the shard
on which these documents will reside.

o This can be used to archive data to shards on cheaper, slower storage or to direct
particular data to a specific data center or geography.

