
Average value, RMS Value, Form factor and Peak factor for different waveforms: 

 
Sinusoidal wave: 
   

   A sinewave is defined by the trigonometric sine function. When plotted as 

voltage (V) as a function of phase (θ), it looks similar to the figure to the below. The 

waveform repeats every 2p radians (360°), and is symmetrical about the voltage axis (when 

no DC offset is present). Voltage and current exhibiting cyclic behavior is referred to as 

alternating; i.e., alternating current (AC). One full cycle is shown here. The basic equation for 

a sinewave is as follows: 

                                          

There are a number of ways in which the amplitude of a sinewave is referenced, usually as 

peak voltage (Vpk or Vp), peak-to-peak voltage (Vpp or Vp-p or Vpkpk or Vpk-pk), average 

voltage (Vav or Vavg), and root-mean-square voltage (Vrms). Peak voltage and peak-to-peak 

voltage are apparent by looking at the above plot. Root-mean-square and average voltage are 

not so apparent. 

                                               

Average Voltage (Vavg) 

  As the name implies, Vavg is calculated by taking the average of the voltage in 

an appropriately chosen interval. In the case of symmetrical waveforms like the sinewave, a 

quarter cycle faithfully represents all four quarter cycles of the waveform. Therefore, it is 

acceptable to choose the first quarter cycle, which goes from 0 radians (0°) through p/2 

radians (90°). 

As with the Vrms formula, a full derivation for the Vavg formula is given here as well. 

                 



 
Root-Mean-Square Voltage (Vrms) 

 

  As the name implies, Vrms is calculated by taking the square root of the mean 

average of the square of the voltage in an appropriately chosen interval. In the case of 

symmetrical waveforms like the sine wave, a quarter cycle faithfully represents all four 

quarter cycles of the waveform. Therefore, it is acceptable to choose the first quarter cycle, 

which goes from 0 radians (0°) through p/2 radians (90°). 

  Vrms is the value indicated by the vast majority of AC voltmeters. It is the 

value that, when applied across a resistance, produces that same amount of heat that a direct 

current (DC) voltage of the same magnitude would produce. For example, 1 V applied across 

a 1 Ω resistor produces 1 W of heat. A 1 Vrms sine wave applied across a 1 Ω resistor also 

produces 1 W of heat. That 1 Vrms sine wave has a peak voltage of √2 V (≈1.414 V), and a 

peak-to-peak voltage of 2√2 V  (≈2.828 V). 

  Since finding a full derivation of the formulas for root-mean-square (Vrms) 

voltage is difficult, it is done here for you.  

     

 

 

Form factor: 

  Two alternating periodic waveforms of the same amplitude and frequency may 

look different depending upon their wave shape/form and then their average & RMS values 

will be different. In order to compare such different waveforms of the same frequency and 

amplitude but of different wave shape a parameter called Form factor is defined as the ratio 

of it’s RMS and Average values.  

                For a sinusoidal signal of peak voltage Vm it is given by : 

Form factor of a sinusoidal signal  = Vrms /Vav 

                                                                                                 = 0.707 Vm / 0.637 Vm = 1.11 



Peak Factor (Or Crest factor): Is defined as the ratio of maximum value to the R.M.S value 

of an alternating quantity. 

                     Peak factor of a sinusoidal signal=Vmax/Vrms 

                                                                                              =Vmax/(0.707 Vm) 

                                      =1.414 

Triangular wave: 

                                
 

When plotted as voltage (V) as a function of phase (θ), a triangle wave looks similar to the 

figure to the above. The waveform repeats every 2π radians (360°), and is symmetrical about 

the voltage axis (when no DC offset is present). Voltage and current exhibiting cyclic 

behavior is referred to as alternating; i.e., alternating current (AC). One full cycle is shown 

here. The basic equation for a triangle wave is as follows: 

                                              for 0 ≤ θ < π/2 

 

There are a number of ways in which the amplitude of a triangle wave is referenced, usually 

as peak voltage (Vpk or Vp), peak-to-peak voltage (Vpp or Vp-p or Vpkpk or Vpk-pk), average 

voltage (Vav or Vavg), and root-mean-square voltage (Vrms). Peak voltage and peak-to-peak 

voltage are apparent by looking at the above plot. Root-mean-square and average voltage are 

not so apparent. 

 

Average Voltage (Vavg) 

 

  As the name implies, Vavg is calculated by taking the average of the voltage in 

an appropriately chosen interval. In the case of symmetrical waveforms like the triangle 

wave, a quarter cycle faithfully represents all four quarter cycles of the waveform. Therefore, 

it is acceptable to choose the first quarter cycle, which goes from 0 radians (0°) through π/2 

radians (90°). 

 

As with the Vrms formula, a full derivation for the Vavg formula is given here as well. 

                         

                               

                         
                                      ≈ 0.5 Vpk 



Root-Mean-Square Voltage (Vrms) 

 

  As the name implies, Vrms is calculated by taking the square root of the mean 

average of the square of the voltage in an appropriately chosen interval. In the case of 

symmetrical waveforms like the triangle wave, a quarter cycle faithfully represents all four 

quarter cycles of the waveform. Therefore, it is acceptable to choose the first quarter cycle, 

which goes from 0 radians (0°) through π/2 radians (90°). 

  Vrms is the value indicated by the vast majority of AC voltmeters. It is the 

value that, when applied across a resistance, produces that same amount of heat that a direct 

current (DC) voltage of the same magnitude would produce. For example, 1 V applied across 

a 1 Ω resistor produces 1 W of heat. A 1 Vrms triangle wave applied across a 1 Ω resistor also 

produces 1 W of heat. That 1 Vrms triangle wave has a peak voltage of √3 V (≈1.732 V), and a 

peak-to-peak voltage of 2√3 V  (≈3.464 V). 

  Since finding a full derivation of the formulas for root-mean-square (Vrms) 

voltage is difficult, it is done here for you. 

                  

                        

                        

           
Form factor: 

                  Form factor of a triangular signal = Vrms /Vav 

                            =.577Vpk/.5Vpk 

                            =1.15 

 

Peak Factor (Or Crest factor): Is defined as the ratio of maximum value to the R.M.S value 

                        

                Peak factor of a triangular signal=Vpk/Vrms 

             =Vpk/.577Vpk 

             =1.732 

 

Square wave: 

 

 

                                                 



When plotted as voltage (V) as a function of phase (θ), a square wave looks similar to the 

figure to the above. The waveform repeats every 2π radians (360°), and is symmetrical about 

the voltage axis (when no DC offset is present). Voltage and current exhibiting cyclic 

behavior is referred to as alternating; i.e., alternating current (AC). One full cycle is shown 

here.  

                The basic equation for a square wave is as follows: 
 

                                                        
 

There are a number of ways in which the amplitude of a square wave is referenced, usually as 

peak voltage (Vpk or Vp), peak-to-peak voltage (Vpp or Vp-p or Vpkpk or Vpk-pk), average 

voltage (Vav or Vavg), and root-mean-square voltage (Vrms). Peak voltage and peak-to-peak 

voltage are apparent by looking at the above plot. Root-mean-square and average voltage are 

not so apparent. 
 

Average Voltage (Vavg) 
 

  As the name implies, Vavg is calculated by taking the average of the voltage in 

an appropriately chosen interval. In the case of symmetrical waveforms like the square wave, 

a quarter cycle faithfully represents all four quarter cycles of the waveform. Therefore, it is 

acceptable to choose the first quarter cycle, which goes from 0 radians (0°) through π/2 

radians (90°). 
 

As with the Vrms formula, a full derivation for the Vavg formula is given here as well. 

                                                   

                                                              

                                 So, Vavg = Vpk 

  

Root-Mean-Square Voltage (Vrms) 

 

  As the name implies, Vrms is calculated by taking the square root of the mean 

average of the square of the voltage in an appropriately chosen interval. In the case of 

symmetrical waveforms like the square wave, a quarter cycle faithfully represents all four 

quarter cycles of the waveform. Therefore, it is acceptable to choose the first quarter cycle, 

which goes from 0 radians (0°) through π/2 radians (90°). 

  Vrms is the value indicated by the vast majority of AC voltmeters. It is the 

value that, when applied across a resistance, produces that same amount of heat that a direct 

current (DC) voltage of the same magnitude would produce. For example, 1 V applied across 

a 1 Ω resistor produces 1 W of heat. A 1 Vrms square wave applied across a 1 Ω resistor also 

produces 1 W of heat. That 1 Vrms square wave has a peak voltage of 1 V, and a peak-to-peak 

voltage of 2 V. 

  Since finding a full derivation of the formulas for root-mean-square (Vrms) 

voltage is difficult, it is done here for you. 



                                                                        

                                                                    

                         So, Vrms = Vpk           

 

Form factor: 

                       Form factor of a triangular signal = Vrms /Vav 

                                               =Vpk/Vpk 

                                                                             =1 
 

Peak Factor (Or Crest factor):  

                             Peak factor of a triangular signal=Vpk/Vrms 

                         =Vpk/Vpk 

 

 

J notation: 

 

The mathematics used in Electrical Engineering to add together resistances, currents or DC 

voltages use what are called “real numbers” either as integers or as fractions.But real numbers 

are not the only kind of numbers we need to use especially when dealing with frequency 

dependent sinusoidal sources and vectors. As well as using normal or real numbers, Complex 

Numbers were introduced to allow complex equations to be solved with numbers that are the 

square roots of negative numbers, √-1. 

In electrical engineering this type of number is called an “imaginary number” and to 

distinguish an imaginary number from a real number the letter “ j ” known commonly in 

electrical engineering as the j-operator, is used. The letter j is placed in front of a real number 

to signify its imaginary number operation.  

Examples of imaginary numbers are: j3, j12, j100 etc. Then a complex number consists of 

two distinct but very much related parts, a “ Real Number ” plus an “ Imaginary Number 

”.Complex Numbers represent points in a two dimensional complex or s-plane that are 

referenced to two distinct axes. The horizontal axis is called the “real axis” while the vertical 

axis is called the “imaginary axis”. The real and imaginary parts of a complex number are 

abbreviated as Re(z) and Im(z), respectively. 

Complex numbers that are made up of real (the active component) and imaginary (the 

reactive component) numbers can be added, subtracted and used in exactly the same way as 

elementary algebra is used to analyse dc circuitsThe rules and laws used in mathematics for 

the addition or subtraction of imaginary numbers are the same as for real numbers, 

j2 + j4 = j6 etc. The only difference is in multiplication because two imaginary numbers 

multiplied together becomes a negative real number. Real numbers can also be thought of as 

a complex number but with a zero imaginary part labelled j0. 

The j-operator has a value exactly equal to √-1, so successive multiplication of “ j “, ( j x j ) 

will result in j having the following values of, -1, -j and +1. As the j-operator is commonly 

used to indicate the anticlockwise rotation of a vector, each successive multiplication or 

power of “ j “, j2, j3 etc, will force the vector to rotate through an angle of 90o anticlockwise 



as shown below. Likewise, if the multiplication of the vector results in a  -j  operator then the 

phase shift will be -90o, i.e. a clockwise rotation. 

Vector Rotation 

  
 

 

So by multiplying an imaginary number by j2 will rotate the vector by  180o anticlockwise, 

multiplying by j3 rotates it  270o and by j4 rotates it  360o or back to its original position. 

Multiplication by j10 or by j30 will cause the vector to rotate anticlockwise by the appropriate 

amount. In each successive rotation, the magnitude of the vector always remains the same. 

 

 

Complex and Polar forms of Representation: 

 

In Electrical Engineering there are different ways to represent a complex number either 

graphically or mathematically. One such way that uses the cosine and sine rule is called the 

Cartesian or Rectangular Form. 
 

A complex number is represented by a real part and an imaginary part that takes the 

generalised form of: 

 

                                             Z=x+jy 

Where 

Z  -  is the Complex Number representing the Vector 

 x  -  is the Real part or the Active component 

 y  -  is the Imaginary part or the Reactive component 

j  -  is defined by √-1 

 



In the rectangular form, a complex number can be represented as a point on a two-

dimensional plane called the complex or s-plane. So for example, Z = 6 + j4 represents a 

single point whose coordinates represent 6 on the horizontal real axis and 4 on the vertical 

imaginary axis as shown. 

 

Complex Numbers using the Complex or s-plane: 

 

                                          
 

Complex Numbers using Polar Form: 

 

Unlike rectangular form which plots points in the complex plane, the Polar Form of a 

complex number is written in terms of its magnitude and angle. Thus, a polar form vector is 

presented as:  Z = A ∠±θ, where: Z is the complex number in polar form, A is the magnitude 

or modulo of the vector and θ is its angle or argument of A which can be either positive or 

negative. The magnitude and angle of the point still remains the same as for the rectangular 

form above, this time in polar form the location of the point is represented in a “triangular 

form” as shown below. 

Polar Form Representation of a Complex Number: 

                                                     
 



As the polar representation of a point is based around the triangular form, we can use simple 

geometry of the triangle and especially trigonometry and Pythagoras’s Theorem on triangles 

to find both the magnitude and the angle of the complex number. As we remember from 

school, trigonometry deals with the relationship between the sides and the angles of triangles 

so we can describe the relationships between the sides as: 
 

                                                    A2=X2+Y2 

 

                                       A=√X2+Y2 

 

                 Also X=A cosө  Y=A sinө 

 

Using trigonometry again, the angle θ of A is given as follows. 

                                 Ө=tan-1y/x 

 

Then in Polar form the length of A and its angle represents the complex number instead of a 

point. Also in polar form, the conjugate of the complex number has the same magnitude or 

modulus it is the sign of the angle that changes, so for example the conjugate of 6 ∠30o 

would be 6 ∠– 30o. 
 
 

Steady state Analysis of Series RLC circuits: 

Thus far we have seen that the three basic passive components: resistance (R), inductance 

(L), and capacitance (C) have very different phase relationships to each other when connected 

to a sinusoidal AC supply. 

                        

In a pure ohmic resistor the voltage waveforms are “in-phase” with the current. In a pure 

inductance the voltage waveform “leads” the current by 90o, giving us the expression of: ELI. 

In a pure capacitance the voltage waveform “lags” the current by 90o, giving us the 

expression of: ICE. 

This phase difference,Ф depends upon the reactive value of the components being used and 

hopefully by now we know that reactance, ( X ) is zero if the circuit element is resistive, 

positive if the circuit element is inductive and negative if it is capacitive thus giving their 

resulting impedances as: 



 

Element Impedance: 

 

Circuit element Resistsnce(R) Reactance(X) Impeadance(Z) 

RESISTOR R 0 ZR=R  RL00 

INDUCTOR L WL ZL=WL L900 

CAPACITOR C 1/WC ZC=1/WC  L-900 

 
 

The series RLC circuit above has a single loop with the instantaneous current flowing 

through the loop being the same for each circuit element. Since the inductive and capacitive 

reactance’s XL and XC are a function of the supply frequency, the sinusoidal response of a 

series RLC circuit will therefore vary with frequency, ƒ. Then the individual voltage drops 

across each circuit element of R, L and C element will be “out-of-phase” with each other as 

defined by: 

           i(t) = Imax sin(ωt)  

The instantaneous voltage across a pure resistor, VR is “in-phase” with current  

The instantaneous voltage across a pure inductor, VL “leads” the current by 90o  

The instantaneous voltage across a pure capacitor, VC “lags” the current by 90o  

Therefore, VL and VC are 180o “out-of-phase” and in opposition to each other 

 

                       
The amplitude of the source voltage across all three components in a series RLC circuit is 

made up of the three individual component voltages, VR, VL and VC with the current common 

to all three components. The vector diagrams will therefore have the current vector as their 

reference with the three voltage vectors being plotted with respect to this reference as shown 

below. 

 

 

Individual Voltage Vectors 



                                           

 

This means then that we cannot simply add together VR, VL and VC to find the supply 

voltage, VS across all three components as all three voltage vectors point in different 

directions with regards to the current vector. Therefore we will have to find the supply 

voltage, VS as the Phasor Sum of the three component voltages combined together 

vectorially. 

Kirchoff’s voltage law ( KVL ) for both loop and nodal circuits states that around any closed 

loop the sum of voltage drops around the loop equals the sum of the EMF’s. Then applying 

this law to the these three voltages will give us the amplitude of the source voltage, VS as. 

Instantaneous Voltages for a Series RLC Circuit: 
                                         

                                

The phasor diagram for a series RLC circuit is produced by combining together the three 

individual phasors above and adding these voltages vectorially. Since the current flowing 

through the circuit is common to all three circuit elements we can use this as the reference 

vector with the three voltage vectors drawn relative to this at their corresponding angles. 

The resulting vector VS is obtained by adding together two of the vectors, VL and VC and then 

adding this sum to the remaining vector VR. The resulting angle obtained between VS and i 

will be the circuits phase angle as shown below. 

Phasor Diagram for a Series RLC Circuit: 
 



                                                            

 
 

      We can see from the phasor diagram on the right hand side above that the voltage vectors 

produce a rectangular triangle, comprising of hypotenuse VS, horizontal axis VR and vertical 

axis VL – VC  Hopefully you will notice then, that this forms our old favourite the Voltage 

Triangle and we can therefore use Pythagoras’s theorem on this voltage triangle to 

mathematically obtain the value of VS as shown.   

 

 Voltage Triangle for a Series RLC Circuit: 
 

                                                 
               
                                                         

Please note that when using the above equation, the final reactive voltage must always be 

positive in value, that is the smallest voltage must always be taken away from the largest 

voltage we cannot have a negative voltage added to VR so it is correct to have VL –

 VC or  VC – VL. The smallest value from the largest otherwise the calculation of VS will be 

incorrect.We know from above that the current has the same amplitude and phase in all the 

components of a series RLC circuit. Then the voltage across each component can also be 

described mathematically according to the current flowing through, and the voltage across 

each element as. 

                                              



By substituting these values into Pythagoras’s equation above for the voltage triangle will 

give us: 

                            

                       
 
 

So we can see that the amplitude of the source voltage is proportional to the amplitude of the 

current flowing through the circuit. This proportionality constant is called the Impedance of 

the circuit which ultimately depends upon the resistance and the inductive and capacitive 

reactance’s. 

Then in the series RLC circuit above, it can be seen that the opposition to current flow is 

made up of three components, XL, XC and R with the reactance, XT of any series RLC circuit 

being defined as: XT = XL – XC or  XT = XC – XL  with the total impedance of the circuit 

being thought of as the voltage source required to drive a current through it. 

The Impedance of a Series RLC Circuit 

As the three vector voltages are out-of-phase with each other, XL, XC and R must also be 

“out-of-phase” with each other with the relationship between R, XL and XC being the vector 

sum of these three components thereby giving us the circuits overall impedance, Z. These 

circuit impedance’s can be drawn and represented by an Impedance Triangle as shown below. 

The Impedance Triangle for a Series RLC Circuit 

                                  

The impedance Z of a series RLC circuit depends upon the angular frequency, ω as do XL 

and XC  If the capacitive reactance is greater than the inductive reactance, XC > XL then the 

overall circuit reactance is capacitive giving a leading phase angle. 

Likewise, if the inductive reactance is greater than the capacitive reactance, XL > XC then the 

overall circuit reactance is inductive giving the series circuit a lagging phase angle. If the two 

reactance’s are the same and XL = XC then the angular frequency at which this occurs is 

called the resonant frequency and produces the effect of resonance  



Then the magnitude of the current depends upon the frequency applied to the series RLC 

circuit. When impedance, Z is at its maximum, the current is a minimum and likewise, when 

Z is at its minimum, the current is at maximum. So the above equation for impedance can be 

re-written as: 

                           

The phase angle, θ between the source voltage, VS and the current, i is the same as for the 

angle between Z and R in the impedance triangle. This phase angle may be positive or 

negative in value depending on whether the source voltage leads or lags the circuit current 

and can be calculated mathematically from the ohmic values of the impedance triangle as: 

                  

Series RLC Circuit Example 

A series RLC circuit containing a resistance of 12Ω, an inductance of 0.15H and a capacitor 

of 100uF are connected in series across a 100V, 50Hz supply. Calculate the total circuit 

impedance, the circuits current, power factor and draw the voltage phasor diagram 

                      
Inductive Reactance, XL. 

 

                                

Capacitive Reactance, XC. 

                               

 

 

 



Circuit Impedance, Z 

                                

Circuits Current, I. 

                                

Voltages across the Series RLC Circuit, VR, VL, VC. 

                                

Circuits Power factor and Phase Angle, θ. 

                                 

Phasor Diagram. 

                                        

 

 

 



Concept of Reactance, Impedance, Susceptance and Admittance: 

Reactance is essentially inertia against the motion of electrons. It is present anywhere 

electric or magnetic fields are developed in proportion to applied voltage or current, 

respectively; but most notably in capacitors and inductors. When alternating current goes 

through a pure reactance, a voltage drop is produced that is 90o out of phase with the current. 

Reactance is mathematically symbolized by the letter “X” and is measured in the unit of 

ohms (Ω). 

Impedance is a comprehensive expression of any and all forms of opposition to electron 

flow, including both resistance and reactance. It is present in all circuits, and in all 

components. When alternating current goes through an impedance, a voltage drop is 

produced that is somewhere between 0o and 90o out of phase with the current. Impedance is 

mathematically symbolized by the letter “Z” and is measured in the unit of ohms (Ω), in 

complex form 

Admittance is also a complex number as impedance which is having a real part, 

Conductance (G) and imaginary part, Susceptance (B). 

                                       

(it is negative for capacitive susceptance and positive for inductive susceptance) 

 
                    

                  
 

Susceptance (symbolized B ) is an expression of the ease with which alternating current ( 

AC) passes through a capacitance or inductance 

 
Phase and phase difference: 

Generally all sinusoidal waveforms will not pass exactly through the zero axis point at the 

same time, but may be “shifted” to the right or to the left of 0o by some value when 

compared to another sine wave. Any sine wave that does not pass through zero at t = 0 has a 

phase shift. 
 

The phase difference or phase shift as it is also called of a Sinusoidal Waveform is the angle 

Φ (Greek letter Phi), in degrees or radians that the waveform has shifted from a certain 

reference point along the horizontal zero axis. In other words phase shift is the lateral 



difference between two or more waveforms along a common axis and sinusoidal waveforms 

of the same frequency can have a phase difference. 

The phase difference, Φ of an alternating waveform can vary from between 0 to its maximum 

time period, T of the waveform during one complete cycle and this can be anywhere along 

the horizontal axis between, Φ = 0 to 2π (radians) or Φ  = 0 to 360o depending upon the 

angular units used. 

Phase difference can also be expressed as a time shift of τ in seconds representing a fraction 

of the time period, T for example, +10mS or – 50uS but generally it is more common to 

express phase difference as an angular measurement. 

Then the equation for the instantaneous value of a sinusoidal voltage or current waveform we 

developed in the previous Sinusoidal Waveform will need to be modified to take account of 

the phase angle of the waveform and this new general expression becomes. 

Phase Difference Equation 

                           

 

         Where:  

                    Am       -  is the amplitude of the waveform.  

                    ωt        -  is the angular frequency of the waveform in radian/sec.  

                   Φ (phi)  -  is the phase angle in degrees or radians that the waveform has  

                                    shifted either left or right from the reference point 

Phase Relationship of a Sinusoidal Waveform: 
 

 



Two Sinusoidal Waveforms – “in-phase” 

                           

Phase Difference of a Sinusoidal Waveform: 

                            
                                     

The voltage waveform above starts at zero along the horizontal reference axis, but at that 

same instant of time the current waveform is still negative in value and does not cross this 

reference axis until 30o later. Then there exists a Phase difference between the two 

waveforms as the current cross the horizontal reference axis reaching its maximum peak and 

zero values after the voltage waveform. 

As the two waveforms are no longer “in-phase”, they must therefore be “out-of-phase” by an 

amount determined by phi, Φ and in our example this is 30o. So we can say that the two 

waveforms are now 30o out-of phase. The current waveform can also be said to be “lagging” 

behind the voltage waveform by the phase angle, Φ. Then in our example above the two 

waveforms have a Lagging Phase Difference so the expression for both the voltage and 

current above will be given as. 

                                         

                                   where, i lags v by angle Φ 

 



Likewise, if the current, i has a positive value and crosses the reference axis reaching its 

maximum peak and zero values at some time before the voltage, v then the current waveform 

will be “leading” the voltage by some phase angle. Then the two waveforms are said to have 

a Leading Phase Difference and the expression for both the voltage and the current will be. 
 
                                                

                  
                   

where, i leads v by angle Φ 

 

Concept of power factor, real, reactive and complex power: 

 

Complex Power is defined as the product of Voltage phasor and conjugate of current phasor 
 

If S is the complex power then, 

 

                 S = V . I* 
 

V is the phasor representation of voltage and I* is the conjugate of current phasor.  

 

So if  V is the reference phasor then V can be written as |V| ∠0. 

(Usually one phasor is taken reference which makes zero degrees with real axis. It eliminates 

the necessity of introducing a non zero phase angle for voltage) 

Let current lags voltage by an angle φ, so  I = | I | ∠-φ 

                                             (current phasor makes -φ degrees with real axis) 

 

                            I*=  | I | ∠φ 

                 So, 

                           S = |V|  | I | ∠(0+φ) =  |V|  | I | ∠φ 

 

(For multiplication of phasors we have considered polar form to facilitate calculation) 

 

Writing the above formula for S in rectangular form we get 

 

                           S =  |V|  | I | cos φ  +  j  |V|  | I | sin φ  

             The real part of complex power S is |V| | I | cos φ which is the real power or average 

power and the imaginary part  |V| | I | sin φ is the reactive power.  

 

             So,              S = P + j Q 

 

 

             Where        P = |V| | I | cos φ    and    Q = |V| | I | sin φ 

 

P is measured in watt and Q is measured in VoltAmp-Reactive or VAR. In power systems 

instead of these smaller units larger units like Megawatt, MVAR and MVA is used. 

 



The ratio of real power and apparent power is the power factor  

 

power factor = Cos φ = |P| / |S| 

 

                      = |P| / √(P 2+Q 2) 

 
 
 
 
 
 

                                     


