UNIT IV
OPEN PLATFORMS AND PROGRAMMING

4.1.1 10T deployment for Raspberry Pi /Arduino platform

A decade ago, working around electronics involved knowledge in physics and math, expensive lab
equipment, a laboratory type setup and important of all, love for electronics. But the picture has changed
over the decade or so where the above-mentioned factors became irrelevant to work around electronics
except for the last part: love for electronics. One such product which made use of the above specified and
many other reasons and made electronics be able reach anyone regardless of their background is
“Arduino”.

Introduction

Arduino is an open-source prototyping platform in electronics based on easy-to-use hardware and
software. Subtly speaking, Arduino is a microcontroller based prototyping board which can be used in
developing digital devices that can read inputs like finger on a button, touch on a screen, light on a sensor
etc. and turning it in to output like switching on an LED, rotating a motor, playing songs through a speaker
etc.

The Arduino board can be programmed to do anything by simply programming the microcontroller on
board using a set of instructions for which, the Arduino board consists of a USB plug to communicate
with your computer and a bunch of connection sockets that can be wired to external devices like motors,
LEDs etc. The aim of Arduino is to introduce the world of electronics to people who have small to no

Wi g LI g gom

experience in electronics like hobbyists, de'signers,

Arduino is based on open source electronics project i.e. all the design specifications, schematics, software
are available openly to all the users. Hence, Arduino boards can bought from vendors as they are
commercially available or else you can make your own board by if you wish i.e. you can download the

schematic from Arduino’s official website, buy all the components as per the design specification, assemble
all the components, and make your own board.

Hardware and Software

Arduino boards are generally based on microcontrollers from Atmel Corporation like 8, 16 or 32 bit AVR
architecture based microcontroller.

The important feature of the Arduino boards is the standard connectors. Using these connectors, we can
connect the Arduino board to other devices like LEDs or add-on modules called Shields. The Arduino
boards also consists of on board voltage regulator and crystal oscillator. They also consist of USB to serial
adapter using which the Arduino board can be programmed using USB connection.

In order to program the Arduino board, we need to use IDE provided by Arduino. The Arduino IDE is based
on Processing programming language and supports C and C++.

Types of Arduino Boards

There are many types of Arduino boards available in the market but all the boards have one thing in
common: they can be programmed using the Arduino IDE. The reasons for different types of boards are
different power supply requirements, connectivity options, their applications etc.

Arduino boards are available in different sizes, form factors, different no. of I/O pins etc. Some of the
commonly known and frequently used Arduino boards are Arduino UNO, Arduino Mega, Arduino Nano,
Arduino Micro and Arduino Lilypad.

Arduino UNO

The most common version of Arduino is the Arduino Uno. This board is what most people are talking about
when they refer to an Arduino. In the next step, there is a more complete rundown of its features.

Arduino Uno Features

Some people think of the entire Arduino board as a microcontroller, but this is inaccurate. The Arduino
board actually is a specially designed circuit board for programming and prototyping with Atmel
microcontrollers.

The nice thing about the Arduino board is that it is relatively cheap, plugs straight into a computer's USB
port, and it is dead-simple to setup and useWrFJ}QQTJW@evelopment boards).

Some of the key features of the Arduino Uno include:
An open source design. The advantage of it being open source is that it has a large community
ofpeople using and troubleshooting it This makes it easy to find someone to help you debug your projects.

« ARDUINO

U'._

O1éek WWW. ARDUINO.CC ~ MADE. T§

An easy USB interface . The chip on the board plugs straight into your USB port and registers on your
computer as a virtual serial port. This allows you to interface with it as through it were a serial device. The
benefit of this setup is that serial communication is an extremely easy (and time-tested) protocol, and USB
makes connecting it to modern computers really convenient.

>

Very convenient power management and built-in voltage regulation. You can connect an external
power source of up to 12v and it will regulate it to both 5v and 3.3v. It also can be powered
directly off of a USB port without any external power.

A 16mhz clock. This makes it not the speediest microcontroller around, but fast enough for most
applications.

» 32 KB of flash memory for storing your code.

13 digital pins and 6 analog pins. These pins allow you to connect external hardware to your
Arduino. These pins are key for extending the computing capability of the Arduino into the real
world. Simply plug your devices and sensors into the sockets that correspond to each of these pins
and you are good to go.

An ICSP connector for bypassing the USB port and interfacing the Arduino directly as a serial
device. This port is necessary to re-bootload your chip if it corrupts and can no longer talk to your
computer.

» An on-board LED attached to digital pin 13 for fast an easy debugging of code.
Step 3: Arduino IDE
. Yale) BareMinimum | Arduino 1.0

¥

BareMinimum

—r—

Before you can start doing anything with the Arduino, you need to download and install the Arduino
IDE (integrated development environment). From this point on we will be referring to the Arduino IDE
as the Arduino Programmer.

The Arduino Programmer is based on the Processing IDE and uses a variation of the C and C++
programming languages.
You can find the most recent version of the Arduino Programmer on this page.

Step 4: Plug It In

Connect the Arduino to your computer's USB port.

Please note that although the Arduino plugs into your computer, it is not a true USB device. The board has
a special chip that allows it to show up on your computer as a virtual serial port whenit is plugged into a
USB port. This is why it is important to plug the board in. When the board is

not plugged in, the virtual serial port that the Arduino operates upon will not be present
It is also good to know that every single Arduino has a unique virtual serial port address. This means that

every time you plug in a different Arduino board into your computer, you will need toreconfigure the serial
port that is in use.

Step 5: Settings

Before you can start doing anything in the Arduino programmer, you must set the board-type
andserial port.
To set the board, go to the following:
Tools --> Boards
Select the version of board that you are using. Since I have an Arduino Uno plugged
in, Tobviously selected "Arduino Uno."
To set the serial port, go to the following:Tools --> Serial Port

Select the serial port that looks like:

/dev/tty.usbmodem [random numbers]

W Arduino File Gt Skeech WEFIY Mew

& Arduino File e Skatch

EtA_aprida

Auto Forman =T
Archive Sketch

Fix Encocmg & Reload
Serial Montor TEM
Seard »
Seral Pon >
Programemer »
Burn Sootioacer

| Toois L

Auto Format =T
Archive Sketch
Fix Encodng & Reload

Bcara

Serwl Montor oEM

ATtiey84 @ 16 MH: fexternsl eryssed 4.3 ¥ BOD)
ATrieg4 @ 8 Mz Gnternal oscillater; 300 diabled)
ATtiey84 @ 1 MMz (internal ascillater; 800 duabled)
ATrimy85 @ 16 MHz [external crystal. 4 3 ¥ BOD)
ATrimyS @ & Mbz (internal aseillater; 300 daabied)
ATtim 85 @ 1 MHz Oateenal osciliatar; 30D dirabsied)
ATtimyds @ 8 MMz

ATtimed5 @ 1 MMz

ATtiny25 @ 8 MMz

ATting25 & 1 M0z

ATtimyd313 @ 8 MKz

ATtimpd313 @ 1 MM

ATtimy2313 @ 8 Mz

ATtimy2313 @ 1 Mite

ATtiryd tw/ US8 Tooy ISF

ATtim45 tw! Arduing as 159

ATtimpd§ tw! AVRISP kil

ATtiry@5 tw/ USE Tiny ISP

ATtiey 85 tw! Arduing 55 159}

ATrioy@S5 tw! AVRISF mkill

Arduing Duemiaron w/ ATrwgal?l

Arduing Diecimia or Duemilanove o) ATmegelEs
Ardiing Rano w! ATmegai2s

Arduing Nano w/ ATmegalEs

Arduing Mega 2560 0r Mega ADK

Arduno Mega (ATmegal280)

Arduing Mni w/ ATmegai2s

Arduing Mini w/ ATmegal6d

Arduing Ethernet

Ardwina Fo

Arduing BT w/ ATmega128

Ardwino BT w/ ATmega 164

LiyPad Arduing wi ATmegal 28

LiyPad Arduine wi ATmega 168

Arduina Pro ar Pro Mind (5V, 16 Wizl w/ ATmegad28
Arduing Pro ar Pro Mt (5V, 16 M) wi ATmega 168
Arduing Pra of Pra Misi 3.3V, 8 MHz) w/ ATmegail§
Ardusna Pro of Pra Ml (3,3V, § MH2) wi ATmega 168
Arduing NG or oider w/ ATmegal68

Arduna NC or slder w/ ATmegal

»

Sarial Pan * 7 fdeviity mibmodemial 3]

Programemer
Burn Sootioacer

fdevjeu ciamedemialil

¥ fdevitry. Blustooth-Mocem
Jdev/eu Busicath-Madem
fdev ity Bustooth-FOA-Syrd
Jdev/cu. Bluetoath-POA-Sync

Step 6: Run a Sketch

® Arduino m Edit Sketch Tools Help
fHNO . New 8N
Z Open... #®0

sketch_mar28a | Ardul

Sketchbook »

sketch_mar28a Examples 1.Basics AnalogReadSerial

>
Close BW 2.Digital BareMinimum

>
3
Save #S 3.Analog > M
Save As... ¢®8S 4 .Communication > DigitalReadSérial
Upload #U 5.Control » Fade
Upload Using Programmer € 3U 6.Sensors > |

.Displ. B
Page Setup TP gSD“sl;r)‘ga: >

Print %P ArduinolSP

EEPROM
Ethernet
Firmata
LiquidCrystal
SD

Servo
SoftwareSerial
SPI

Stepper

Wire

VVYVyVYyVYyVYVYVYYY

Arduino programs are called sketches. The Arduino programmer comes with a ton of example sketches
preloaded. This is great because even if you have never programmed anything in your life, you can load
one of these sketches and get the Arduino to do something.

To get the LED tied to digital pin 13 to bli
The blink example can be found here:
Files --> Examples --> Basics --> Blink
The blink example basically sets pin D13 as an output and then blinks the test LED on theArduino
board on and off every second.

nk on and off, let's load the blink example.

Once the blink example is open, it can be installed onto the ATMEGA328 chip by pressing theupload
button, which looks like an arrow pointing to the right.

Notice that the surface mount status LED connected to pin 13 on the Arduino will start to blink. You can
change the rate of the blinking by changing the length of the delay and pressing the upload button again.

Step 7: Serial Monitor

[® Arduino

AnatogReadSerial | Arduing 1,0

AD0H. ! 31
04 | (Send |
(90); —
} ur
67
) 66
senscevalue = (an) 586
¢ {sensorvotue); 565
3 563
62
42
4
559 L]
554
554
557
555 0
555 >
553 v
Autoscroll No line ending ﬂ 9600 bawd T{

Ardedng Use on fdevfity sxbmodemdal i1

n

Serial Monioe E‘

AnalogReadseral

bol) {
pn(eesn);

04
senscralue « (aa):
= o {sensorValue)

The serial monitor allows your computer to connect serially with the Arduino. This is important because
it takes data that your Arduino is receiving from sensors and other devices and displaysit in real-time on
your computer. Having this ability is invaluable to debug your code and understand what number values
the chip is actually receiving.

For instance, connect center sweep (middle pin) of a potentiometer to A0, and the outer pins, respectively,
to 5v and ground. Next upload the sketch shown below:

File --> Examples --> 1.Basics --> AnalogReadSerial Click the button to engage the serial monitor which
looks like a magnifying glass. You can now see the numbers being read by the analog pin in the serial
monitor. When you turn the knob the numbers will increase and decrease.

The numbers will be between the range of 0 and 1023. The reason for this is that the analog pinis

converting a voltage between 0 and 5V to a discreet number.

Step 8: Digital In

The Arduino has two different types of input pins, those being analog and digital. To begin with, lets look
at the digital input pins

Digital input pins only have two possible states, which are on or off. These two on and off states are also
referred to as:

HIGH or LOW

lor0

5V or OV.
This input is commonly used to sense the presence of voltage when a switch is opened or closed. Digital

inputs can also be used as the basis for countless digital communication protocols. By creating a 5V
(HIGH) pulse or 0V (LOW) pulse, you can create a binary signal, the basis of all computing. This is useful
for talking to digital sensors like a PING uvitaswrioggis@e ccrocommunicating with other devices.

Step 9: Analog In

Aside from the digital input pins, the Arduino also boasts a number of analog input pins.

Analog input pins take an analog signal and perform a 10-bit analog-to-digital (ADC) conversionto turn
it into a number between 0 and 1023 (4.9mV steps).

This type of input is good for reading resistive sensors. These are basically sensors whichprovide
resistance to the circuit. They are also good for reading a varying voltage signal between0 and 5V. This is
useful when interfacing with various types of analog circuitry.

If you followed the example in Step 7 for engaging the serial monitor, you have already tried using an
analog input pin.

Step 10: Digital Out

A digital out pin can be set to be HIGH (5v) or LOW (0v). This allows you to turn things on and off.
Aside from turning things on and off (and making LEDs blink), this form of output is convenientfor a
number of applications.

Most notably, it allows you to communicate digitally. By turning the pin on and off rapidly, you are
creating binary states (0 and 1), which is recognized by countless other electronic devices asa binary
signal. By using this method, you can communicate using a number of differentprotocols.

Digital communication is an advanced topic, but to get a general idea of what can be done, checkout the
Interfacing With Hardware page.

If you followed the example in Step 6 for getting an LED to blink, you have already tried using adigital

=

Step 11: Analog Out

As mentioned earlier, the Arduino has a number of built in special functions. One of thesespecial
functions is pulse width modulation, which is the way an Arduino is able to create an analog-like
output.

Pulse width modulation - or PWM for short - works by rapidly turning the PWM pin high (5V) and low
(0V) to simulate an analog signal. For instance, if you were to blink an LED on and off rapidly enough
(about five milliseconds each), it would seem to average the brightness and only appear to be receiving
half the power. Alternately, if it were to blink on for 1 millisecond and then blink off for 9 millisecond,
the LED would appear to be 1/10 as bright and only be receiving1/10 the voltage.

PWM is key for a number of applications including making sound, controlling the brightness of lights,
and controlling the speed of motors.

To try out PWM vyourself, connect an LED and 220 ohm resistor to digital pin 9, in series toground.
Run the following example code:

File --> Examples --> 3.Analog --> Fading

