
Problems:

1. The single line diagram of an unloaded power system is shown in Fig 1. The generator transformer ratings are as follows.

Draw the reactance diagram using a base of 50 MVA and 11 kV on the generator1.

Solution:

Base megavoltampere, MVAb,new=50 MVA

Base kilovolt kVb,new=11 kV (generator side)

Formula:

The new p.u. reactance
$$X_{pu,new} = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$$

Reactance of Generator G1

MVAb,old= 20 MVA MVAb,new=50 MVA

Xp.u,old=0.25p.u

The new p.u. reactance of Generator
$$G = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$$

=0.25 × $\left(\frac{11}{11}\right)^2 \times \left(\frac{50}{20}\right) = j0.625p.u$

Reactance of Transformer T1

kVb,old=11 kV	kVb,new=11 kV
MVAb,old= 25 MVA	MVAb,new=50 MVA
Xp.u,old=0.15p.u	

The new p.u. reactance of Transformer
$$TI = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$$
$$= 0.15 \times \left(\frac{11}{11}\right)^2 \times \left(\frac{50}{25}\right) = j0.3 \ p.u$$

Reactance of Transmission Line

It is connected to the HT side of the Transformer T1

Base kV on HT side of transformer T I = Base kV on LT side $\times \frac{HT \text{ voltage rating}}{LT \text{ voltage rating}}$ =11 $\times \frac{220}{11}$ = 220 kV

Actual Impedance X actual = 100ohm

Base impedance $X_{base} = \frac{(kV_{b,new})^2}{MVA_{b,new}} = \frac{220^2}{50} = 968 \text{ ohm}$

p.u reactance of 100 Ω transmission line= $\frac{Actual \ Reactance \ ,ohm}{Base \ Reactance \ ,ohm} = \frac{100}{968} = j0.103 \ p.u$ p.u reactance of 150 Ω transmission line= $\frac{Actual \ Reactance \ ,ohm}{Base \ Reactance \ ,ohm} = \frac{150}{968} = j0.154 \ p.u$

Reactance of Transformer T2

MVAb,old= 10 * 3=30 MVA

MVAb,new=50 MVA

Xp.u,old=0.15p.u

The new p.u. reactance of Transformer $T2 = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$ $= 0.15 \times \left(\frac{220}{220}\right)^2 \times \left(\frac{50}{30}\right) = j0.25 \ p.u$

Reactance of Generator G2

It is connected to the LT side of the Transformer T2

Base kV on LT side of transformer T 2 = Base kV on HT side $\times \frac{LT \text{ voltage rating}}{HT \text{ voltage rating}}$ =220 $\times \frac{18}{220}$ = 18 kV

kVb,old=18 kV	kVb,new=18 kV
MVAb,old= 30 MVA	MVAb,new=50 MVA
Xp.u,old=0.25 p.u	

The new p.u. reactance of Generator G $2=X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$ =0.25 × $\left(\frac{18}{18}\right)^2 \times \left(\frac{50}{30}\right) = j0.4167 \, p.u$

Reactance of Transformer T3

kVb,old=20 kV kVb,new=20 kV MVAb,old=20 MVA MVAb,new=50 MVA

Xp.u,old=0.15p.u

The new p.u. reactance of Transformer T3= $X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$

$$=0.15 \times \left(\frac{20}{20}\right)^2 \times \left(\frac{50}{30}\right) = j0.25 \ p.u$$

Reactance of Generator G3

It is connected to the LT side of the Transformer T3

Base kV on LT side of transformer T 3 = Base kV on HT side $\times \frac{LT \text{ voltage rating}}{HT \text{ voltage rating}}$ =220 $\times \frac{20}{220}$ = 20 kV

kVb,old=20 kV	kVb,new=20 kV
MVAb,old= 30 MVA	MVAb,new=50 MVA
Xp.u,old=0.21 p.u	

The new p.u. reactance of Generator G
$$3=X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$$

=0.21 × $\left(\frac{20}{20}\right)^2 \times \left(\frac{50}{30}\right) = j0.35 \ p.u$

2). Draw the reactance diagram for the power system shown in fig. Use a base of 50MVA 230 kV in 30 Ω line. The ratings of the generator, motor and transformers are

Generator = 20 MVA, 20 kV, X=20% Motor = 35 MVA, 13.2 kV, X=25% T1 = 25 MVA, 18/230 kV (Y/Y), X=10% T2 = 45 MVA, 230/13.8 kV (Y/Δ), X=15%

Solution:

Base megavoltampere, MVAb, new=50 MVA

Base kilovolt kVb,new=230 kV (Transmission line side)

Formula

The new p.u. reactance
$$X_{pu,new} = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$$

Reactance of Generator G

It is connected to the LT side of the T1 transformer

Base kV on LT side of transformer T 1 = Base kV on HT side $\times \frac{LT \text{ voltage rating}}{HT \text{ volta ge rating}}$ =230 $\times \frac{18}{230}$ = 18 kV

kVb,old=20 kV

kVb,new=18 kV

MVAb,old= 20 MVA

MVAb,new=50 MVA

Xp.u,old=0.2p.u

The new p.u. reactance of Generator $G=X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$ =0.2 × $\left(\frac{20}{18}\right)^2 \times \left(\frac{50}{20}\right) = j0.617 p.u$

Reactance of Transformer T1

kVb,old=18 kV	kVb,new=18 kV
MVAb,old= 25 MVA	MVAb,new=50 MVA
Xp.u,old=0.1p.u	

The new p.u. reactance of Transformer $TI = X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$ $= 0.1 \times \left(\frac{18}{18}\right)^2 \times \left(\frac{50}{25}\right) = j0.2 \ p.u$

Reactance of Transmission Line

It is connected to the HT side of the Transformer T1

Actual Impedance X actual= j30 ohm

Base impedance $X_{base} = \frac{(kV_{b,new})^2}{MVA_{b,new}} = \frac{230^2}{50} = 1058 \text{ ohm}$

p.u reactance of j30 Ω transmission line= $\frac{Actual \ Reactance \ ,ohm}{Base \ Reactance \ ,ohm} = \frac{j30}{1058} = j0.028 \ p.u$

Reactance of Transformer T2

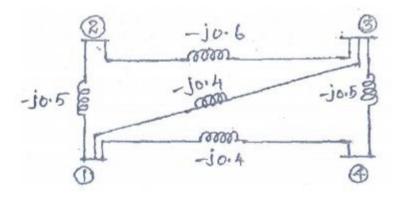
kVb,old=230 kV	kVb,new=230 kV
MVAb,old= 45 MVA	MVAb,new=50 MVA
Xp.u,old=0.15p.u	

The new p.u. reactance of Transformer $T2=X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times \left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$ =0.15 × $\left(\frac{230}{230}\right)^2 \times \left(\frac{50}{45}\right) = j0.166 \ p.u$

Reactance of Motor M2

It is connected to the LT side of the Transformer T2

Base kV on LT side of transformer T 2 = Base kV on HT side $\times \frac{LT \text{ voltage rating}}{HT \text{ voltage rating}}$ =230 $\times \frac{13.8}{230}$ = 13.8 kV


kVb,old=13.2 kV	kVb,new=13.8 kV
MVAb,old= 35 MVA	MVAb,new=50 MVA
Xp.u,old=0.25 p.u	
The new p.u. reactance of Generator G $2=X_{pu,old} \times \left(\frac{kV_{b,old}}{kV_{b,new}}\right)^2 \times$	

$$=0.25 \times \left(\frac{13.2}{13.8}\right)^2 \times \left(\frac{50}{35}\right) = j0.326 \, p.u$$

 $\left(\frac{MVA_{b,new}}{MVA_{b,old}}\right)$

Bus admittance matrix

1. Find the bus admittance matrix for the given network in Fig. Determine the reduced admittance matrix by eliminating node 4. The values are marked in p.u.

Solution:

$$Y_{BUS} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{bmatrix}$$

$$Y11 = y12 + y13 + y14 = -j0.5 - j0.4 - j0.4 = -j1.3$$

$$Y22 = y12 + y23 = -j0.5 - j0.6 = -j1.1$$

$$Y33 = y32 + y31 + y34 = -j0.6 - j0.4 - j0.5 = -j1.5$$

$$Y44 = y41 + y43 = -j0.4 - j0.5 = -j0.9$$

$$Y12 = -y12 = j0.5 Y13 = -y13 = j0.4$$

$$Y14 = -y14 = j0.4 Y21 = Y12 = j0.5$$

$$Y23 = -y23 = j0.6$$

$$Y24 = -y24 = 0$$

$$Y31 = Y13 = j0.4$$

$$Y32 = Y23 = j0.6$$

$$Y34 = -y34 = j0.5$$

$$Y41 = Y14 = j0.4$$

$$Y42 = Y24 = 0$$

$$Y43 = Y34 = j0.5$$

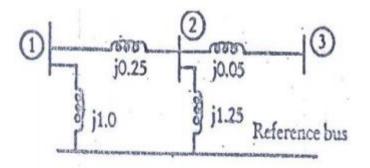
$$Y_{BUS} = \begin{bmatrix} -j1.3 & j0.5 & j0.4 & j0.4 \\ j0.5 & -j1.1 & j0.6 & 0 \\ j0.4 & j0.6 & -j1.5 & j0.5 \\ j0.4 & 0 & j0.5 & -j0.9 \end{bmatrix}$$

Elements of new bus admittance matrix after eliminating 4th row and 4th column

$$Y_{jk,new} = Y_{jk} - \frac{Y_{jn} Y_{nk}}{Y_{nn}}$$

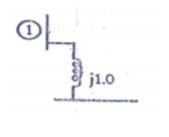
$$Y_{11,new} = Y_{11} - \frac{Y_{14}Y_{41}}{Y_{44}} = -j1.3 - \frac{(j0.4)(j0.4)}{-j0.9} = -j1.12$$

$$Y_{12,new} = Y_{12} - \frac{Y_{14}Y_{42}}{Y_{44}} = j0.5 - \frac{(j0.4)(j0)}{-j0.9} = j0.5$$

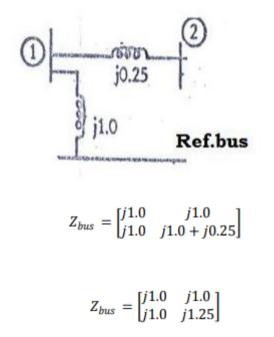

$$Y_{13,new} = Y_{13} - \frac{Y_{14}Y_{43}}{Y_{44}} = j0.4 - \frac{(j0.4)(j0.5)}{-j0.9} = j0.622$$
$$Y_{21,new} = Y_{12,new} = j0.5$$
$$Y_{22,new} = Y_{22} - \frac{Y_{24}Y_{42}}{Y_{44}} = -j1.1 - \frac{(j0)(j0)}{-j0.9} = -j1.1$$
$$Y_{23,new} = Y_{23} - \frac{Y_{24}Y_{43}}{Y_{44}} = j0.6 - \frac{(j0)(j0.5)}{-j0.9} = j0.6$$

$$Y_{31,new} = Y_{13,new} = j0.622$$
$$Y_{32,new} = Y_{23,new} = j0.6$$
$$Y_{33,new} = Y_{33} - \frac{Y_{34}Y_{43}}{Y_{44}} = -j1.5 - \frac{(j0.5)(j0.5)}{-j0.9} = -j1.22$$

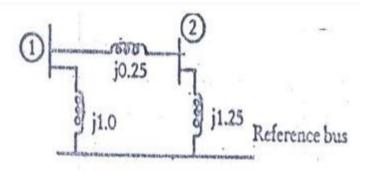
Reduced admittance matrix after eliminating 4 th row and 4th column


$$Y_{BUS} = \begin{bmatrix} -j1.12 & j0.5 & j0.622\\ j0.5 & -j1.1 & j0.6\\ j0.622 & j0.6 & -j1.222 \end{bmatrix}$$

2) Find the bus impedance matrix for the system whose reactance diagram is shown in fig 3. All the impedances are in p,u.


Solution:

Step 1: connect bus 1 to ref bus through impedance j1.0



 $Z_{bus} = [j1.0]$

Step 2: connect bus 2 to the bus 1 through impedance j0.25

Step 3: connect bus 2 to ref bus through impedance j1.25

$$Z_{bus} = \begin{bmatrix} j1.0 & j1.0 & j1.0 \\ j1.0 & j1.25 & j1.25 \\ j1.0 & j1.25 & j1.25 + j1.25 \end{bmatrix}$$
$$Z_{bus} = \begin{bmatrix} j1.0 & j1.0 & j1.0 \\ j1.0 & j1.25 & j1.25 \\ j1.0 & j1.25 & j2.5 \end{bmatrix}$$

Number of buses is only 2. But matrix size is 3*3. The matrix size is reduced by eliminating 3rd row and 3rd column

.

$$Z_{jk,ack} = Z_{jk} - \frac{Z_{j(n+1)}Z_{(n+1)k}}{Z_{(n+1)(n+1)}}$$

Where n=2 j=1,2 k=1,2

n=2 j=1 k=1

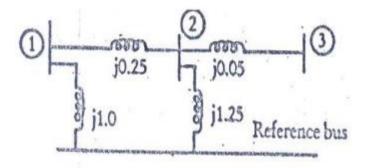
$$Z_{11,ack} = Z_{11} - \frac{Z_{13}Z_{31}}{Z_{33}}$$
$$Z_{11,ack} = j1.0 - \frac{j1.0 * j1.0}{j2.5} = j0.6$$

n=2 j=1 k=2

$$Z_{12,ack} = Z_{12} - \frac{Z_{13}Z_{32}}{Z_{33}}$$
$$Z_{12,ack} = j1.0 - \frac{j1.0 * j1.25}{j2.5} = j0.5$$

n=2 j=2 k=1

$$Z_{21,ack} = Z_{12,ack} = j0.5$$


n=2 j=2 k=2

$$Z_{22,ack} = Z_{22} - \frac{Z_{23}Z_{32}}{Z_{33}}$$
$$Z_{22,ack} = j1.25 - \frac{j1.25 * j1.25}{j2.5} = j0.625$$

The reduced matrix

$$Z_{bus} = \begin{bmatrix} j0.6 & j0.5 \\ j0.5 & j.625 \end{bmatrix}$$

Step 4: connect bus 3 to bus 2 through impedance j0.05

	j0.6	j0.5	j0.5
$Z_{bus} =$	j0.5	j0.625	j0.625
	j0.5	j.625	j0.5 j0.625 j.675