1.2 STATICALLY AND DYNAMICALLY INDUCED EMF

Dynamically induced EMF

Figure 1.7 shows three conductors a, b, c moving in a magnetic field of flux density B in the directions indicated by arrow. Conductor a is moving in a direction perpendicular to its length and perpendicular to the flux lines. Therefore it cuts the lines of force and a motional emf is induced in it. Let the conductor move by a distance dx in a time dt. If the length of conductor is l, the area swept by the conductor is l dx. Then change in flux linking the coil

Since there is only one conductor $= d\phi = Bldx$

$$e = \frac{d\phi}{dt} = \frac{Bldx}{dt}$$

Since dx/dt is v, i.e velocity of conductor,

[Source: "Electric Machinery Fundamentals" by Stephen J. Chapman, Page: 59]

where

e = emf induced, volts

B = flux density, tesla

- v = velocity of conductor, metres/second
- l =length of conductor, metres

The motion of conductor *b* (Fig. 1.7*b*) is at an angle θ to the direction of the field. If the conductor moves by a distance *dx*, the component of distance travelled at right angles to the field is (*dx* sin θ) and, proceeding as above, the induced emf is

 $E = Blv \sin\theta$ volts

The force F on a particle of charge Q moving with a velocity v in a magnetic field B is

 $F = Q(v \times B) \quad N$

Dividing F by Q we get the force per unit charge, *i.e.* electric field E, as

$$E = \frac{F}{Q} = v \times B \quad \text{volts/m}$$

The electric field E is in a direction normal to the plane containing v and B. If the charged particle is one of the many electrons in a conductor moving across the magnetic field, the emf e between the end points of conductor is line integral of electric field E, or

$$e = \oint E \cdot dl = \oint (v \times B) \cdot dl$$

where

e = emf induced, volts

E = electric field, volts/m

dl = elemental length of conductor, m

v = velocity of conductor, metres/second

B = flux density, tesla.

Statically induced emf (or Transformer emf)

Statically induced emf (also known as transformer emf) is induced by variation of flux. It may be (a) mutually induced or (b) self induced. A mutually induced emf is set up in a coil whenever the flux produced by a neighbouring coil changes. However, if a single coil carries alternating current, its flux will follow the changes in the current. This change in flux will induce an emf known as self-induced emf in the coil, the word 'self' signifying that it is induced due to a change in its own current. The magnitude of statically induced emf. It is also known as transformer emf, since it is induced in the

windings of a transformer. The total flux linkages λ of a coil is equal to the integral of the normal component of flux density *B* over the surface bounded by the coil, or The surface over which the integration is carried out is the surface bounded by the periphery of the coil. Thus, induced emf

$$\lambda = \iint B \cdot ds$$
$$e = \frac{d\lambda}{dt} = \frac{d}{dt} \iint B \cdot ds$$
$$e = \frac{d}{dt} \int_{s} B \cdot ds$$

When the coil is stationary or fixed

$$e = \int_{s} \frac{\partial B}{\partial t} \cdot dt$$

where

e =emf induced, volts

B = flux density, tesla

ds = element of area, m²

t =time, seconds.

EE3303 ELECTRICAL MACHINES-I