

Transplantation Types

Autograft

Autografts are the transplant of tissue to the same person. Sometimes this is done with surplustissue, tissue that can regenerate, or tissues more desperately needed elsewhere (examples include skin grafts, vein extraction for CABG, etc.). Sometimes an autograft is done to remove the tissue and then treat it or the person before returning it (examples include stem cell autograft and storing blood in advance of surgery).

Allograft and allo transplantation

An allograft is a transplant of an organ or tissue between two genetically non-identical members of the same species. Most human tissue and organ transplants are allografts. Due to the genetic difference between the organ and the recipient, the recipient's immune system will identify the organ as foreign and attempt to destroy it, causing transplant rejection.

Isograft

A subset of allografts in which organs or tissues are transplanted from a donor to a genetically identical recipient (such as an identical twin). Isografts are differentiated from other types of transplants because while they are anatomically identical to allo grafts, they do not trigger an immunological response.

Xenograft and xenotransplantation

A transplant of organs or tissue from one species to another. An example is porcine heart valve transplant, which is quite common and successful. Another example is attempted piscine-primate (fish to non-human primate) transplant of islet (i.e. pancreatic or insular tissue) tissue. The latter research study was intended to pave the way for potential human use if successful. However, xenotransplantation is often an extremely dangerous type of transplant because of the increased risk of non-compatibility, rejection, and disease carried in the tissue.

Success of transplantation between identical twins proposes that the success rate depends on the amount of sharing of histocompatibility genes.

Histocompatibility genes are responsible for the production of antigens on cell surface. With reference to the surface antigens, the grafts or transplants are differentiated into four types.

They are as follows:

1. Autograft or Autogenic graft
2. Isograft or Syngraft or Syngenetic graft,

3. allografts or Homografts,

4. Xenograft.

1. Autograft or Autogenic graft:

When tissue is transplanted from one site to another in the same individual, the transplant is referred as "autograft" or "autogenic graft" (From Greek Auto=Self).

Immune system of recipient accepts the autograft very easily, because antigens of recipient cells and the transplant edit tissue are alike.

2. Isograft or Syngraft or Syngentic graft:

The graft taken from a genetically identical person is known as Isograft or Syngraft or Syngentic graft. This kind of transplantation is possible between two genetically identical twins.

Since development of identical twins takes place from a single zygote, identical twins share same genes that are responsible for the production of antigens.

3. Allograft or Homograft:

If the transplantation is carried between genetically different members of the same species, the graft is called as "allograft". The allograft is formally named as "Homograft".

The histocompatibility antigens of allograft are dissimilar with the host histocompatibility antigens. Hence immune system of recipient/ host identifies the graft as foreign and induces an immune response against it, resulting in rejection of graft.

4. Xenograft:

If the transplantation between individuals of two different species is carried, for e.g. Transplanting monkey liver to human, the graft is referred as "Xenograft".

Since the histocompatibility genes are quite different, host's body rejects the graft more vigorously.

Blood transfusion

Blood transfusion is generally the process of receiving blood or blood products into one's circulation intravenously. Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, white blood cells, plasma, clotting factors

actors, and platelets.

Red blood cell transfusion was considered when the hemoglobin level fell below 10 g/dL or hematocrit falls below 30% (the "10/30 rule"). Because each unit of blood given carries risks, a trigger level lower than that at 7–8 g/dL is now usually used as it has been shown to have better patient outcomes. The administration of a single unit of blood is the standard for hospitalized people who are not bleeding, with this treatment then followed with reassessment and consideration of symptoms and hemoglobin concentration. Patients with poor oxygen saturation may need more blood. The advisory caution to use blood transfusion only with more severe anemia is in part due to evidence that outcomes are worsened if larger amounts are given. One may consider transfusion for people with symptoms of cardiovascular diseases such as chest pain or shortness of breath. In cases where patients have low levels of hemoglobin but are cardiovascularly stable, parenteral iron is a referred option based on both efficacy and safety.

Blood transfusions typically use sources of blood: one's own (autologous transfusion), or someone else's (allogeneic or homologous transfusion). The latter is much more common than the former. Using another's blood must first start with donation of blood. Blood is most commonly donated as whole blood intravenously and collecting it with an anticoagulant. In developed countries, donations are usually anonymous to the recipient, but products in a blood bank are always individually traceable through the whole cycle of donation, testing, separation into components, storage, and administration to the recipient. This enables management and investigation of any suspected transfusion-related disease transmission or transfusion reaction.

Blood transfusion is generally the process of receiving blood products into one's circulation intravenously. Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, white blood cells, plasma, clotting factors, and platelets.

Procedure

Before a blood transfusion is given, there are many steps taken to ensure quality of the blood products, compatibility, and safety to the recipient. In 2012, a national blood policy was in place in 70% of countries and 62% of countries had specific legislation that covers the safety and quality of blood transfusion.

Blood donation

Blood transfusion typically uses sources of blood: one's own (autologous transfusion), or someone else's (allogeneic or homologous transfusion).

The latter is much more common than the former.

Using another's blood must first start with donation of blood. Blood is most commonly donated as whole blood intravenously and collecting it with an anticoagulant.

In developed countries, donations are usually anonymous to the recipient, but products in a blood bank are always individually traceable through the whole cycle of donation, testing, separation into components, storage, and administration to the recipient. This enables management and investigation of any suspected transfusion related disease transmission or transfusion reaction.

In developing countries the donor is sometimes specifically recruited by or for the recipient, typically a family member, and the donation occurs immediately before the transfusion.

Processing and Testing

Donated blood is usually subjected to processing after it is collected, to make it suitable for use in specific patient populations. Collected blood is then separated into blood components by centrifugation: red blood cells, plasma, platelets, albumin protein, clotting factor concentrates, cryoprecipitate, fibrinogen concentrate, and immunoglobulins (antibodies). Red cells, plasma and platelets can also be donated individually via a more complex process called apheresis.

- All donated blood is tested for infections. The current protocol tests donated blood for HIV-1, HIV-2, HTLV-1, HTLV-2, Hepatitis B, Hepatitis C, Syphilis (*Treponema pallidum*). In addition, platelet products are also tested for bacterial infections due to its higher inclination for contamination and to storage at room temperature..
- All donated blood is also tested for ABO and Rh groups, along with the presence of any red blood cell antibodies.
- Pathogen Reduction treatment that involves, for example, the addition of riboflavin with subsequent exposure to UV light has been shown to be effective in inactivating pathogens (viruses, bacteria, parasites and white blood cells) in blood products. By inactivating white blood cells in donated blood products, riboflavin and UV light treatment can also replace gamma-irradiation as a method to prevent graft-versus-host disease (TA-GvHD).

Compatibility testing

Before a recipient receives a transfusion, compatibility testing between donor and recipient blood must be done. The first step before a transfusion is given is to Type and Screen the recipient's blood. Typing of recipient's blood determines the ABO and Rh status. The sample is then screened for any alloantibodies that may react with donor blood. It takes about 45 minutes to complete (depending on the method used). The blood bank scientist also checks for special requirements of the patient (e.g. need for washed, irradiated or CMV negative blood) and the history of the patient to see if they have a previously identified antibodies and any other serological anomalies.

Adverse effects

In the same way that the safety of pharmaceutical products are overseen by pharmacovigilance, the safety of blood and blood products are overseen by Haemovigilance. This is defined by the World Health Organization (WHO) as "...to identify and prevent occurrence or recurrence of transfusion related unwanted events, to increase the safety, efficacy and efficiency of blood transfusion, covering all activities of the transfusion chain from donor to recipient."

The system should include monitoring, identification, reporting, investigation and analysis of adverse events near-misses and reactions related to transfusion and manufacturing.

Transfusions of blood products are associated with several complications, many of which can be grouped as immunological or infectious. There is also increasing focus (and controversy) on complications arising directly or indirectly from potential quality degradation during storage.

Immunogicreaction

- *Acute hemolytic reactions* occur with transfusion of red blood cells, and occurs in about 0.016 percent of transfusions, with about 0.003 percent being fatal. This is due to destruction of donor red blood cells by preformed recipient antibodies. Symptoms include fever, chills, chest pain, back pain, hemorrhage, increased heart rate, shortness of breath, and a rapid drop in blood pressure. When suspected, transfusions should be stopped immediately, and bloods sent for tests to evaluate for presence of hemolysis.
- *Delayed hemolytic reactions* occur more frequently (about 0.025 percent of transfusions) and are due to the same mechanisms as in acute hemolytic reactions.

Most blood transfusions go very smoothly. Sometimes mild problems can occur. Very rarely, serious problems occur.

Allergic Reactions- Some people have allergic reactions to the blood given during transfusions. This can happen even when the donated blood is the correct blood type. Allergic reactions can be mild or severe. Symptoms may include: Anxiety, Chest or back pain, Trouble breathing, Fever, A quick pulse or low blood pressure, Nausea (feeling sick to your stomach)

A nurse or doctor will stop the transfusion at the first signs of an allergic reaction. The healthcare team will figure out the severity of the reaction, what treatments are needed, and whether they can safely restart the transfusion.

ORGAN TRANSPLANTATION

Moving an organ from a donor's body to a patient's body, or to create organs from the patient's own stem cells (regenerative medicine as an emerging field) in order to replace the recipient's damaged or absent organ, that is what the term Organ Transplantation refers to, including the following organs.

- Thymus
- Intestine
- Lungs
- Pancreas
- Liver
- Kidneys
- Heart

It also involves transplantation of tissues such as,

- Bones
- Musculoskeletal grafts
- Cornea
- Skin
- Heart valves
- Nerves
- Veins

It is one of the most complex and challenging areas of medicine, because of the ever-present risk that the recipient body rejects the transplant, making the removal necessary.

Benefits and Outcomes of Organ Transplant

Organ transplant is the last possibility to address a state of organ failure. Kidney for instance, is the most frequently carried out organ transplant worldwide, and it is considered the best treatment for its cost-effectiveness and life-quality prospects it restores.

Organ transplantation requires long-term health evaluation of the patient. Only academic communities and medical scientists have the right to monitor the outcomes of transplants and regulated donations.

Three Essential Processes

In modern times, doctors and patients face an enormous demand for transplants which has long surpassed the supply of organs. Patients must wait a long time, years in some cases, for a chance to get hold of a donated organ. That's why scientists are working along with politicians to solve this problem.

Organ distribution is therefore the first essential step, followed by the transplant surgery and the follow-up or post-surgery recovery.

Evaluation Process

The following are some components of the transplant evaluation process:

- Psychological evaluation – in which the medical team assesses significant psychological and social issues such as stress, financial situation and family support.
- Blood tests – essential in the selection process to joining the donor's list. They are performed to determine donor match, priority in the list and to improve chances against organ rejection.
- Diagnosis – to assess health status. Includes X-rays, ultrasound, biopsy, dental examinations, among other diagnostic tests depending on the transplant surgery.

quired.

OrganDistribution

When a particular organ fails, transplant can be the only chance for the patient. For procedures like kidney and liver transplant, a willing donor might be found among family members or friends. A very small number of transplants come from people donating as a result of a good Samaritan gesture. Nevertheless, there is still the necessity of being appropriate for donor-recipient match, a process of selection achieved through serotyping. Then it is possible to proceed with the surgery state.

Patients must find a transplant team or a group of organ surgeons and health professionals, who decide if the patient is a good candidate, based on the attitude, psychological state, medical history and other factors, to be included in the national waiting list for transplantation.

When the organ becomes available, based on the criteria of all relevant information, a recipient, the best match for the organ is chosen. Then the hospital prepares for surgery.

SurgicalProcedure

The fully anesthetized patient is injected with anticoagulant to keep the blood from clotting during the transplantation procedure. Doctors connect the heart-lung machine, in the case of a heart transplant, or other life-support devices to enable the surgeon to remove the organ without disrupting body functions.

Three types of rejection

Following a transplant surgery, the following three types of rejection might occur:

- Chronic rejection – might last months or years.
- Acute rejection – a few days after transplant and it is the immune response to foreign matter.
- Hyperacute rejection – as soon as the organ is connected to the new body.

Types of Transplant

- Autograft – transplant of tissue from one area of the body to another, using surplus tissue which is regenerative.
- Allograft – transplant of tissue or organ between non-identical members of a species. This transplant might cause rejection due to genetic difference.
- Xenograft or xenotransplant – a transplant from one species to another. Very risky due to rejection.

Individual organs-kidney, liver, heart, lung, bone, skin, hair and pancreas

Kidney transplant:

- Renal transplantation is the preferred treatment for patients with end-stage renal disease. It offers better quality of life and confers greater longevity than long-term dialysis.
- There are 2 critical stages:
 - Initial doctors to identify potential donors from a pool of critically ill patients who are readmitted to hospital.
 - They care for patients once they have been transplanted and present with complications related to their immunosuppressive therapy, infections or ARF.
- Diabetic nephropathy accounts for 40% of the diseases resulting in renal transplantation. This subgroup of patients are also more prone to complications after renal transplantation.
- The spectrum of diseases in transplant patients is different from the general population.
- The classical presentation of common medical disorders may be modified by immunosuppressive medication.

The Transplantation Process

- Transplant coordinators should be called early for any patient whom may meet brain death criteria in the future.
- Absolute contraindications for organ donation include HIV, sepsis, non-CNS malignancy and severe CVS disease.
- Age is also a relative contraindication (i.e. organs not harvested from patients > 75 years of age).
- The pretransplantation workup of a potential donor includes testing for CMV, HSV, EBV, HIV, Hep A, B, C, D + E and HTLV type 1.
- Following brain death, a number of physiological changes occur that need to be rectified if donor organ perfusion is to be preserved.
- Increased cerebral edema after trauma or stroke results in catecholamine release and HT. With brainstem necrosis, catecholamine levels drop rapidly resulting in hypotension. This should be corrected with fluid and vasoressors.
- About 75% of organ donors develop diabetes insipidus due to pituitary necrosis and this leads to hypovolaemia.
- Systemic thermal control is often lost due to hypothalamic ischaemia which results in coagulopathy, hepatic dysfunction and cardiac dysfunction.
- Allograft: graft between genetically dissimilar individuals of the same species.
- Autograft: graft in which donor and recipient are the same individual.
- Xenograft: Donor and recipient belong to different species.

The Surgical Procedure

- Wet ischaemia time (time from cessation of circulation to removal of organ and its placement in cold storage) should not exceed 30 mins.
- Transplanted kidney is placed in the R or L lower quadrant of the abdomen in an extraperitoneal position. On examination, the transplant is easily palpable.
- The transplant renal artery is anastomosed to the ipsilateral internal or external iliac artery, the renal vein to the internal or external iliac vein and the transplant ureter to the bladder.
- Generally a single kidney is transplanted.
- When small, paediatric or older cadaveric donor kidneys with age-related loss of renal function are transplanted, both kidneys from the donor might be placed in a single recipient to provide adequate renal mass.
- Living donor transplants often immediately after transplant, +/- 30% of cadaveric transplants have delayed graft function because of more prolonged ischaemic cold preservation. The septa need continued dialysis support until the kidney starts to function.

Liver transplant:

1960: Initial Liver Transplant (LT) techniques done using dogs. 1963: First human LT attempt by Starzl.

1967 : First successful LT by Starzl. Early 1980's: LT became clinical reality.

1983: Definitive therapy for end-stage liver disease (ESLD).

1988: Development of the University of Wisconsin (UW) solution (graft preservation). 1992: First Liver xenotransplants x 2 (baboon) by AG Tzakis

Potential Indications for LT

Viral hepatitis

Malignant neoplasm of liver and intrahepatic bile ducts Benign neoplasm of liver and biliary passages Carcinoma of liver and biliary system

Neoplasm of uncertain behavior in liver and biliary passages Neoplasm of unspecified nature in digestive system Glycogenesis

Pure hypercholesterolemia

Lipidoses

Disorders of copper metabolism

Cystic fibrosis, disorders of porphyrin metabolism, other disorders of purine and pyrimidine metabolism, amyloidosis, disorders of bilirubin excretion, mucopolysaccharidosis, other deficiencies of circulating enzymes

Congenital factor VII disorder

Congenital factor IX disorder Budd-Chiari syndrome

Acute and subacute necrosis of liver Alcoholic fatty liver

Alcoholic cirrhosis of liver Chronic hepatitis

Cirrhosis of the liver without mention of alcohol Biliary cirrhosis

Other chronic nonalcoholic liver disease Unspecified liver disease without mention of alcohol Other sequelae of chronic liver disease

Other specified disorders of gallbladder

Biliary atresia, other anomalies of gallbladder, bile ducts, and liver Perinatal jaundice due to hepatocellular damage

Other specified perinatal disorders of digestive system Injury to liver

Encephalopathy, unspecified Portal vein thrombosis

Liver recipient procedure Orthotopic LT

Total Hepatectomy (venovenous bypass)

Caval anastomosis (conventional, Piggyback technique). Reperfusion

Portal vein anastomosis

Hepatic Artery anastomosis (end to end, infrarenal aortic jump graft) Biliary reconstruction (duct-to-duct, Roux-en-Y hepatico-jejunostomy).

Living Donor/Split LT

Living-donor LT: part of the liver from a living donor is resected and transplanted into a recipient.

Split LT: a whole adult liver is transected into 2 pieces to provide grafts for 2 recipients

Postoperative Care

Liver function tests monitoring

Fibrinogen level is the most important indicator of graft function in first 24 hours (>100).

Gradual normalization of ALT, AST, T.Bili, PT.

Early elevation of liver enzymes (LEs) followed by quick normalization is reflective of preservation injury (cold preservation).

Primary non functional liver: marked increase of (LEs) and T. Bili (Tx: re-transplant). Thrombocytopenia: Platelet count decrease in the first week after LT and increased during the second week. (Platelet sequestration in the liver and spleen, preservation injury).

Doppler US Liver: intra-operatively, and daily until POD #5. (Velocity and RI of HA, PV, HV flow).

Daily monitoring of immunosuppressive drug levels.

Immunosuppressant regimens

- ✓ ISP drugs necessary to prevent rejection.
- ✓ The risk of rejection is highest (up to 40%) during the first 3-6 months after transplantation and decreases significantly thereafter.
- ✓ ISP induction: Prograf (FK) + Steroids (OR)
- ✓ Maintenance:
Prograf + Steroids

Prograf + Campath (steroid freeprotocol)Rapamycin+ Steroids
OKT-3(severerejection)

BoneMarrowTransplant

Located in the interior of our bones, bone marrow is one of the areas that we are never concerned with until we have some complaint. However, this flexible, spongy and well-protected tissue is essential for our organism.

A vital component of the bone marrow are stem cells which are immature cells that are able to form a variety of different cells in our body (e.g.: neural cells). Stem cells are responsible for the production of the cellular elements of the blood: red blood cells (carry oxygen), platelets (ensure blood clotting) and lymphocytes (immune functions).

WhatAreTheMostCommonDiseases?

Aplastic anemia (damaged bone marrow and dropped red blood cell production)

Leukemia (abnormal white cell production) Bone marrow cancer

Moreover, cancer radiation and chemotherapy can also severely damage bone marrow. To avoid it, before radiation or chemotherapy treatment of cancer patients their stem cells are harvested from the bone marrow to protect them and after the treatment they are re-injected to restore immune functions.

Diagnosis

Examination of bone marrow tissue can happen by biopsy and bone marrow aspiration to gain information about the source of blood production. The procedure is rather unpleasant but unavoidable.

BoneMarrowTransplant

Bone marrow transplantation can be the only solution to treat some severe diseases, such as: bone marrow cancer, leukemia

multiple myeloma, certain blood diseases, autoimmune diseases

In the procedure stem cells are taken from a healthy donor and infused into the patient to help ideal blood cell production.

BoneMarrowTransplantProcedure

We can distinguish three kinds of bone marrow transplants:

Autologous (the process of removing and re-injecting the patient's own bone marrow before cancer treatment)

Umbilical cord blood transplant (stem cells are removed from the baby's umbilical cord for later use)

Allogenic bone marrow transplant (from donor or patient)

In allogenic procedures, first the matching donor is identified by blood tests (usually family members with similar genes).

Patients' own bone marrow is suppressed by radiation and chemotherapy. It is important in order to remove malfunctioning stem cells and to suppress the immune system that will resist the transplanted cells less.

Stem cells are taken from a donor, who receives general anesthesia while the bone marrow is surgically removed from the hip bones.

The stem cells are infused into the bloodstream with a catheter, similarly to a blood transfusion. The stem cells will find their way to the bone marrow. Bone marrow transplant has many risks and usually involves a long hospital stay post-treatment.

Heart Transplant Surgery

Heart transplant surgery is a major procedure to replace a malfunctioning heart with a healthy donor heart. About 50% of heart transplant patients live 10 years or longer with the new heart, people who otherwise would have little chance of survival on medication or with minor heart surgeries. All potential complications considered, the practice of cardiac transplant is remarkably successful.

Who Is Eligible For Heart Transplant Surgery?

Patients who have tried all other medical and surgical options and are determined to take the necessary lifestyle changes. Eligible patients are usually younger than 65 and have no other life threatening medical problem. The following conditions may call for heart transplantation-

- Inherited and congenital heart defects
- Coronary artery disease
- Cardiomyopathy (weakening heart muscles)
- Diseases of the heart valves

Heart Transplant Procedure

When all other medical means have failed to improve, the physician refers the patient to a heart transplant center to evaluate the case and the subject's general health status.

Then the patient is added to the heart transplant waiting list. As there is a global shortage of donor hearts, waiting lists are usually long.

When there is a recently deceased donor, doctors must consider the following aspects before appointing a patient for heart transplant surgery-

- Severity and urgency of the heart failure

- Size of the donor heart
- Blood type

The donor heart must be transplanted within 4 hours of removal so doctors and patients usually do not have much time for contemplation, a decision must be made immediately.

The heart transplant surgery itself is not very long; it takes about 4-5 hours. During the procedure the patient is connected to a heart-lung machine to maintain circulation while the diseased heart is changed to the donor heart. The newly implanted heart receives an electric shock to initiate its beating, but sometimes it starts automatically once the blood flows again in the veins. For a few days after the operation patients experience heavy breathing, pain and chest pressure, but these side-effects cease after about a week or two. After patients are discharged from hospital, constant check-ups are necessary for another three months.

During this period patients will be administered medication to repress your immune system, to reduce the risk that the immune system attacks the foreign tissues. Weakened immune responses should be compensated with antibiotic and antiviral medication.

In the recovery period patients should get used to new lifestyle habits, healthy, regular eating and physical activity. Most cardiac transplant patients can resume their normal activities within 3-6 months but they are instructed to avoid stress and strenuous workout.

The Risks of Heart Transplant Surgery

- Immune rejection of the new heart may occur in the first year post-surgery. In order to monitor it, regular biopsies are taken from the heart. The signs of rejection are very similar to that of the flu: headache, fever, weakness, dizziness and vomiting.
- Artificial weakening of the immune system can be a double-edged sword, which can result in viral and bacterial infections.

In spite of the efficiency of the procedure and the relatively few cases of complication, heart transplant surgery has many downsides that need to be addressed in the future –

- Costs are extremely high, usually several hundred of dollars
- Insurers' reluctance to cover the costs
- Limited eligibility of patients
- Scarce donor hearts
- Slow channels that do not reach the patient in time.

where the intensity of the liver's response is directly proportional to the mass resected. For almost 80 years surgical resection of the liver in rodents has been a very useful model to the study of cell proliferation.

Future research and regenerative medicine

By defining the properties of stem cells that regenerate complex body parts, scientists are learning how injury causes these stem cells to regenerate the missing part instead of just forming scar tissue.

Ethical considerations of Tissue engineering

Different approaches address ethical considerations of tissue engineering: research ethics, socioeconomic issues and anthropological issues.

Research ethics

- When asking the consent of cell donors, it is important to inform them of the use of their tissue. But will researchers explain clearly what they will do with the cells and what kind of tests they will perform? Will the information provided be sufficient?
- Can the human body and its parts be subject to property rights?

Socioeconomic issues

- What will be the costs of tissue engineering products and treatments?
- Who will finance the research? The government or the private sector?
- Who will be given priority to receive these treatments? Young people with congenital diseases or the elderly who suffer from degenerative diseases?

Anthropological issues

- Is it ethically right to fight the negative effects of ageing? Is extending life always a good thing?
- Have we thought about the consequences of having a ageing society?