Greenhouse

Greenhouse is the most practical method of achieving the objectives of protected agriculture, where the natural environment is modified by using sound engineering principles to achieve optimum plant growth and yields.

Green House:

environment.

A greenhouse is a framed or an inflated structure covered with a transparent or translucent material in which crops could be grown under the conditions of at least partially controlled environment and which is large enough to permit persons to work within it to carry out cultural operations.

The growing of off - season cucumbers under transparent stone for Emperor Tiberius in

the 1st century, is the earliest reported protected agriculture. The technology was rarely employed during the next 1500 years. In the 16th century, glass lanterns, bell jars and hot beds covered with glass were used to protect horticultural crops against cold. In the 17th century, low portable wooden frames covered with an oiled translucent paper were used to warm the plant

In Japan, primitive methods using oil -paper and straw mats to protect crops from the severe natural environment were used as long ago the early 1960s. Greenhouses in France and England during the same century were heated by manure and covered with glass panes. The first greenhouse in the 1700s used glass on one side only as a sloping roof. Later in the century, glass was used on both sides. Glasshouses were used for fruit crops such as melons, grapes, peaches and strawberries, and rarely for vegetable production.

Protected agriculture was fully established with the introduction of polyethylene after the World war II. The first use of polyethylene as a greenhouse cover was in 1948, when professor Emery Myers Emmert, at the University of Kentucky, used the less expensive material in place of more expensive glass.

The total area of glasshouses in the world (1987) was estimated to be 30,000 ha and most of these were found in North-Western Europe. In contrast to glasshouses, more than half

of the world area of plastic green houses is in Asia, in which China has the largest area. According to 1999 estimates, an area of 6, 82,050 ha were under plastic greenhouses (Table 1.1). In most of the countries, green houses are made of plastic and glass; the majority is plastic.

Glasshouses and rigid plastic houses are longer-life structures, and therefore are most located in cold regions where these structures can be used throughout the year. In Japan, year-round use of greenhouses is becoming predominant, but in moderate and warm climate regions, they are still provisional and are only used in winter.

In India, the cultivation in the plastic greenhouses is of recent origin. As per 1994-95 estimates, approximately 100 ha of India are under greenhouse cultivation.

Since 1960, the greenhouse has evolved into more than a plant protector. It is now better understood as a system of controlled environment agriculture (CEA), with precise control of air and root temperature, water, humidity, plant nutrition, carbon dioxide and light. The greenhouses of today can be considered as plant or vegetable factories. Almost every aspect of the production system is automated, with the artificial environment and growing system under nearly total computer control.

Greenhouse Effect

In general, the percentage of carbon dioxide in the atmosphere is 0.035% (345 ppm). But, due to the emission of pollutants and exhaust gases into the atmosphere, the percentage of carbon dioxide increases which forms a blanket in the outer atmosphere. This causes the entrapping of the reflected solar radiation from the earth surface. Due to this, the atmospheric temperature

increases, causing global warming, melting of ice caps and rise in the ocean levels which result in the submergence of coastal lines. This phenomenon of increase in the ambient temperature, due to the formation of the blanket of carbon dioxide is known as **greenhouse effect**.

The greenhouse covering material acts in a similar way, as it is transparent to shorter wave radiation and opaque to long wave radiation.

During the daytime, the shorter wave radiation enters into the greenhouse and gets reflected from the ground surface. This reflected radiation becomes long wave radiation and is entrapped inside the greenhouse by the covering material. This causes the increase in the greenhouse temperature.

It is desirable effect from point of view of crop growth in the cold regions.

Advantages of Greenhouses

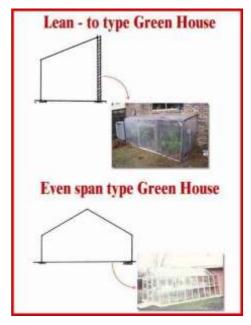
The following are the different advantages of using the green house for growing crops under controlled environment:

- 1. Throughout the year four to five crops can be grown in a green house due to availability of required plant environmental conditions.
- 2. The productivity of the crop is increased considerably.
- 3. Superior quality produce can be obtained as they are grown under suitably controlled environment.
- 4. Gadgets for efficient use of various inputs like water, fertilizers, seeds and plant protection chemicals can be well maintained in a green house.
- 5. Effective control of pests and diseases is possible as the growing area is enclosed.
- 6. Percentage of germination of seeds is high in greenhouses.
- 7. The acclimatization of plantlets of tissue culture technique can be carried out in a green house.
- 8. Agricultural and horticultural crop production schedules can be planned to take advantage of the market needs.
- 9. Different types of growing medium like peat mass, vermiculate, rice hulls and compost that are used in intensive agriculture can be effectively utilized in the greenhouse.
- 10. Export quality produce of international standards can be produced in a green house.
- 11. When the crops are not grown, drying and related operations of the harvested produce can be taken up utilizing the entrapped heat.
- 12. Greenhouses are suitable for automation of irrigation, application of other inputs and environmental controls by using computers and artificial intelligence techniques.
- 13. Self-employment for educated youth

2 Greenhouse Structure

Greenhouse structures of various types are used successfully for crop production. Although there are advantages in each type for a particular application, in general there is no single type greenhouse, which can be considered as the best. Different types of greenhouses are designed to meet the specific needs.

2.1 Greenhouse type based on shape


Greenhouses can be classified based on their shape or style. For the purpose of classification, the uniqueness of the cross section of the greenhouses can be considered as a factor. As the longitudinal section tend to be approximately the same for all types, the longitudinal section of the greenhouse cannot be used for classification. The cross sections

depict the width and height of the structure and the length is perpendicular to the plane of cross section. Also, the cross section provides information on the overall shape of the structural members, such as truss or hoop, which will be repeated on every day.

The commonly followed types of greenhouse based on shape are lean-to, even span, uneven span, ridge and furrow, saw tooth and quonset.

2.1.1 Lean-to type greenhouse

A lean-to design is used when a greenhouse is placed against the side of an existing building. It is built against a building, using the existing structure for one or more of its sides (Fig.1). It is usually attached to a house, but may be attached to other buildings. The roof of the

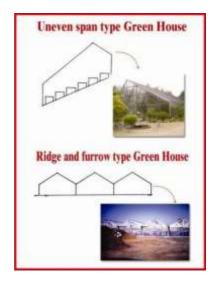
building is extended with appropriate greenhouse covering material and the area is properly enclosed. It is typically facing south side. The lean-to type greenhouse is limited to single or double-row plant benches with a total width of 7 to 12 feet. It can be as long as the building it is attached to. It should face the best direction for adequate sun exposure.

The advantage of the lean-to type greenhouse is that, it usually is close to available electricity, water, and heat. It is a least expensive structure. This design makes the best use of sunlight and minimizes the requirement of roof supports. It has the following disadvantages: limited space, limited light, limited ventilation and temperature

control. The height of the supporting wall limits the potential size of the design. Temperature control is more difficult because the wall that the greenhouse is built on, may collect the sun's heat while the translucent cover of the greenhouse may lose heat rapidly. It is a half greenhouse, split along the peak of the roof.

2.1.2 Even span type greenhouse

The even-span is the standard type and full-size structure, the two roof slopes are of equal pitch and width (Fig.1). This design is used for the greenhouse of small size, and it is constructed on level ground. It is attached to a house at one gable end. It can accommodate 2 or 3 rows of plant benches. The cost of an even-span greenhouse is more than the cost of a lean-to type, but it has greater flexibility in design and provides for more plants. Because of its size and greater amount of exposed glass area, the even-span will cost more to heat. The design has a better shape than a lean-to type for air circulation to maintain uniform temperatures during the winter


heating season. A separate heating system is necessary unless the structure is very close to a heated building. It will house 2 side benches, 2 walks, and a wide center bench. Several single and multiple span types are available for use in various regions of India. For single span type the span in general, varies from 5 to 9 m, whereas the length is around 24 m. The height varies from 2.5 to 4.3 m.

2.1.3 Uneven span type greenhouse

This type of greenhouse is constructed on hilly terrain. The roofs are of unequal width; make the structure adaptable to the side slopes of hill (Fig. 2). This type of greenhouses is seldom used now-a-days as it is not adaptable for automation.

2.1.4 Ridge and furrow type greenhouse

Designs of this type use two or more A-frame greenhouses connected to one another along

length of the eave (Fig. 2). The eave serves as furrow or gutter to carry rain and melted snow away. The side wall is eliminated between the greenhouses, which results in a structure with a single large interior, Consolidation of interior space reduces labour, lowers the cost of automation, improves personal management and reduces fuel consumption as there is less exposed wall area through which heat escapes. The snow loads must be taken into the frame

specifications of these greenhouses since the snow cannot slide off the roofs as in case of individual free standing greenhouses,

but melts away. In spite of snow loads, ridge and furrow greenhouses are effectively used in northern countries of Europe and in Canada and are well suited to the Indian conditions.

2.1.5 Saw tooth type Greenhouse

These are also similar to ridge and furrow type greenhouses except that, there is provision for natural ventilation in this type. Specific natural ventilation flow path (Fig. 3) develops in a saw- tooth type greenhouse.

2.2 Greenhouse type based on utility

Classification of greenhouses can be made depending on the functions or utilities. Of the different utilities, artificial cooling and heating of the greenhouse are more expensive and elaborate. Hence based on the artificial cooling and heating, greenhouses are classified as green houses for active heating and active cooling system.

2.2.1 Greenhouses for active heating

During the night time, air temperature inside greenhouse decreases. To avoid the cold bite to plants due to freezing, some amount of heat has to be supplied. The requirements for heating greenhouse depend on the rate at which the heat is lost to the outside environment. Various methods are adopted to reduce the heat losses, viz., using double layer polyethylene, thermo pane glasses (Two layers of factory sealed glass with dead air space) or to use heating systems, such as unit heaters, central heat, radiant heat and solar heating system.

2.2.2 Greenhouses for active cooling

During summer season, it is desirable to reduce the temperatures of greenhouse than the ambient temperatures, for effective crop growth. Hence suitable modifications are made in the green house so that large volumes of cooled air is drawn into greenhouse, This type of greenhouse either consists of evaporative cooling pad with fan or fog cooling. This greenhouse is designed in such a way that it permits a roof opening of 40% and in some cases nearly 100%.

2.3 Greenhouse type based on construction

The type of construction is predominantly influenced by the structural material, though the covering material also influences the type. Span of the house inurn dictates the selection of structural members and their construction. Higher the span, stronger should be the material and more structural members are used to make sturdy truss type frames. For smaller spans, simpler designs like hoops can be followed.

2.3.1 Wooden framed structures

In general, for the greenhouses with span less than 6 m, only wooden framed structures are used. Side posts and columns are constructed of wood without the use of a truss. Pine wood is commonly used as it is inexpensive and possesses the required strength. Timber locally available, with good strength, durability and machinability also can be used for the construction.

2.3.2 Pipe framed structures

Pipes are used for construction of greenhouses, when the clear span is around 12m (Fig. 4). In general, the side posts, columns, cross ties and purlins are constructed using pipes. In this type, the trusses are not used.

2.3.3 Truss framed structures

If the greenhouse span is greater than or equal to 15m, truss frames are used. Flat steel, tubular

steel or angular iron is welded together to form a truss encompassing rafters, chords and struts (Fig. 4). Struts are support members under compression and chords are support members under tension. Angle iron purlins running throughout the length of greenhouse are bolted to each truss. Columns are used only in very wide truss frame houses of 21.3 m or more. Most of the glass houses are of truss frame type, as these

2.4 Greenhouse type based on covering materials

Covering materials are the major and important component of the greenhouse structure. Covering materials have direct influence on the greenhouse effect inside the structure and they alter the air temperature inside the house. The types of frames and method of fixing also varies with the covering material. Based on the type of covering materials, the greenhouses are classified as glass, plastic film and rigid panel greenhouses.

2. 4.1 Glass greenhouses

Only glass greenhouses with glass as the covering material existed prior to 1950. Glass as covering material has the advantage of greater interior light intensity. These greenhouses have higher air infiltration rate which leads to lower interior humidity and better disease prevention. Lean-to type, even span, ridge and furrow type of designs are used for construction of glass greenhouse.

2.4.2 Plastic film greenhouses

Flexible plastic films including polyethylene, polyester and polyvinyl chloride are used as covering material in this type of greenhouses. Plastics as covering material for greenhouses have become popular, as they are cheap and the cost of heating is less when compared to glass greenhouses. The main disadvantage with plastic films is its short life. For example, the best quality ultraviolet (UV) stabilized film can last for four years only. Quonset design as well as gutter-connected design is suitable for using this covering material.

2.4.3 Rigid panel greenhouses

Polyvinyl chloride rigid panels, fibre glass-reinforced plastic, acrylic and polycarbonate rigid panels are employed as the covering material in the quonset type frames or ridge and furrow type frame. This material is more resistant to breakage and the light intensity is uniform throughout the greenhouse when compared to glass or plastic. High grade panels have long life even up to 20 years. The main disadvantage is that these panels tend to collect dust as well as to harbor algae, which results in darkening of the panels and subsequent reduction in the light transmission. There is significant danger of fire hazard.

2.5 Shading nets

There are a great number of types and varieties of plants that grow naturally in the most diverse climate conditions that have been transferred by modern agriculture from their natural habitats to controlled crop conditions. Therefore, conditions similar to the natural ones must be created for each type and variety of plant. Each type of cultivated plant must be given the specific type of shade required for the diverse phases of its development. The shading nets fulfill the task of giving appropriate micro-climate conditions to the plants.

Shade nettings are designed to protect the crops and plants from UV radiation, but they also provide protection from climate conditions, such as temperature variation, intensive rain and winds. Better growth conditions can be achieved for the crop due to the controlled microclimate

conditions "created" in the covered area, with shade netting, which results in higher crop yields.

All nettings are UV stabilized to fulfill expected lifetime at the area of exposure. They are characterized of high tear resistance, low weight for easy and quick installation with a 30-90% shade value range. A wide range of shading nets are available in the market which are defined on the basis of the percentage of shade they deliver to the plant growing under them.

Plant response to greenhouse environments

Plant response to greenhouse environments - light, temperature, relative humidity, ventilation and carbon dioxide and environmental requirement of agriculture and horticulture crops inside green houses.

The productivity of a crop is influenced not only by its heredity but also by the microclimate around it. The components of crop microclimate are light, temperature, air compositions and the nature of the root medium. In open fields, only manipulation of nature of the root medium by tillage, irrigation and fertilizer application is possible. The closed boundaries in greenhouse permit control of any one or more of the components of the micro climate.

3.1 Light

The visible light of the solar radiation is a source of energy for plants. Light energy, carbon dioxide (Co₂) and water all enter in to the process of photosynthesis through which carbohydrates are formed. The production of carbohydrates from carbon dioxide and water in the presence of chlorophyll, using light energy is responsible for plant growth and reproduction. The rate of photosynthesis is governed by available fertilizer elements, water, carbon dioxide, light and temperature.

The photosynthesis reaction can be represented as follows

Considerable energy is required to reduce the carbon that is combined with oxygen in CO₂ gas to the state in which it exists in the carbohydrate. The light energy thus utilized is trapped in the carbohydrate. If the light intensity is diminished, photosynthesis slows down and hence the growth. If higher than optimal light intensities are provided, growth again slows down because

Chlorophyll Co₂ + water+ light energy ----- carbohydrates + oxygen Plant nutrients

of the injury to the chloroplasts.

The light intensity is measured by the international unit known as Lux. It is direct illumination on the surrounding surface that is one meter from a uniform point source of 1 international candle. Green house crops are subjected to light intensities varying from 129.6klux

on clear summer days to 3.2 Klux on cloudy winter days. For most crops, neither condition is ideal. Many crops become light saturated, in other words, photosynthesis does not increase at light intensities higher than 32.2klux. Rose and carnation plants will grow well under summer light intensities. In general, for most other crops foliage is deeper green if the greenhouse is shaded to the extent of about 40% from mid spring (May) to mid fall (August and September). Thus, it is apparent that light intensity requirements of photosynthesis are vary considerably from crop to crop.

Light is classified according to its wave length in nanometers (nm). Not all light useful in photosynthesis process. UV light is available in the shorter wavelength range, i.e less than 400nm. Large of quantities of it is harmful to the plants. Glass screens are opaque to the most UV light and light below the range of 325nm. Visible and white light has wavelength of 400 to 700nm. Far red light (700 to 750nm) affects plants, besides causing photosynthesis. Infrared rays of longer wavelengths are not involved in the plant process. It is primarily, the visible spectrum of light that is used in photosynthesis. In the blue and red bands, the photosynthesis activity is higher, when the blue light (shorter wavelength) alone is supplied to plants, the growth is retarded, and the plant becomes hard and dark in colour. When the plants are grown under red light (longer wavelength), growth is soft and internodes are long, resulting in tall plants. Visible light of all wavelengths is readily utilized in photosynthesis.

3.2 Temperature

Temperature is a measure of level of the heat present. All crops have temperature range in which they can grow well. Below this range, the plant life process stop due to ice formation within the tissue and cells are possibly punctured by ice crystals. At the upper extreme, enzymes become inactive, and again process essential for life cease. Enzymes are biological reaction catalyst and are heat sensitive. All biochemical reactions in the plant are controlled by the enzymes. The rate of reactions controlled by the enzyme often double or triple for each rise of temperature by 10^{0} C, until optimum temperature is reached. Further, increase in temperature begins to suppress the reaction and finally stop it.

As a general rule, green house crops are grown at a day temperature, which are 3 to 6°C higher than the night temperature on cloudy days and 8°C higher on clear days. The night temperature of green house crops is generally in the range of 7 to 21°C. Primula, mathiola incana and calceolaria grow best at 7°C, carnation and cineraria at 10°C, rose at 16°C, chrysanthemum and poinsettia at 17 to 18°C and African violet at 21 to 22°C.

3.3 Relative humidity

As the green house is a closed space, the relative humidity of the green house air will be more when compared to the ambient air, due to the moisture added by the evapo-transpiration process. Some of this moisture is taken away by the air leaving from the green house due to ventilation.

Sensible heat inputs also lower the relative humidity of the air to some extent. In order to maintain the desirable relative humidity levels in the green houses, processes like humidification or dehumidification are carried out. For most crops, the acceptable range of relative humidity is between 50 to 80%. However for plant propagation work, relative humidity up to 90% may be desirable.

In summer, due to sensible heat addition in the daytime, and in winters for increasing the night time temperatures of the green house air, more sensible heat is added causing a reduction in the relative humidity of the air. For this purpose, evaporative cooling pads and fogging system of humidification are employed. When the relative humidity is on the higher side, ventilators, chemical dehumidifiers and cooling coils are used for de-humidification.

3.4 Ventilation

A green house is ventilated for either reducing the temperature of the green house air or for replenishing carbon dioxide supply or for moderating the relative humidity of the air. Air temperatures above 35°C are generally not suited for the crops in green house. It is quite possible to bring the green house air temperature below this upper limit during spring and autumn seasons simply by providing adequate ventilation to the green house. The ventilation in a green house can either be natural or forced. In case of small green houses (less than 6m wide) natural ventilation can be quite effective during spring and autumn seasons. However, fan ventilation is essential to have precise control over the air temperature, humidity and carbon dioxide levels.

3.5 Carbon dioxide

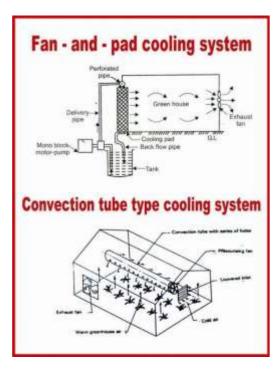
Carbon is an essential plant nutrient and is present in the plant in greater quantity than any other nutrient. About 40% of the dry matter of the plant is composed of carbon. Under normal conditions, carbon dioxide (CO₂) exits as a gas in the atmosphere slightly above 0.03% or 345ppm. During the day, when photosynthesis occurs under natural light, the plants in a green house draw down the level of Co₂ to below 200ppm. Under these circumstances, infiltration or ventilation increases **carbon dioxide levels**, when the outside air is brought in, to maintain the ambient levels of CO₂. If the level of CO₂ is less than ambient levels, CO₂ may retard the plant growth. In cold climates, maintaining ambient levels of CO₂ by providing ventilation may be uneconomical, due to the necessity of heating the incoming air in order to maintain proper growing temperatures. In such regions, enrichment of the green house with CO₂ is followed. The exact CO₂ level needed for a given crop will vary, since it must be correlated with other variables in greenhouse production such as light, temperature, nutrient levels, cultivar and degree of maturity. Most crops will respond favorably to Co₂ at 1000 to 1200 ppm.

Equipment required for controlling green house environment – summer cooling and winter cooling, natural ventilation, forced ventilation and computers.

Precise control of various parameters of green house environment is necessary to optimize energy inputs and thereby maximize the economic returns. Basically, the objective of environmental control is to maximize the plant growth. The control of green house environment means the control of temperature, light, air composition and nature of the root medium. A green house is essentially meant to permit at least partial control of microclimate within it. Obviously green houses with partial environmental control are more common and economical. From the origin of greenhouse to the present there has been a steady evolution of controls. Five stages in this evolution include manual controls, thermostats, step-controllers, dedicated micro processors and computers. This chain of evolution has brought about a reduction in control labour and an improvement in the conformity of green house environments to their set points. The benefits achieved from green house environmental uniformity are better timing and good quality of crops, disease control and conservation of energy.

4.1 Active summer cooling systems

Active summer cooling is achieved by evaporative cooling process. The evaporative cooling systems developed are to reduce the problem of excess heat in green house. In this process cooling takes place when the heat required for moisture evaporation is derived from the surrounding environment causing a depression in its temperature. The two active summer cooling systems in use presently are fan-and pad and fog systems. In the evaporative cooling process the cooling is possible only up to the wet bulb temperature of the incoming air.


4.1.1 Fan-and Pad cooling system

The fan and pad evaporative cooling system has been available since 1954 and is still the most common summer cooling system in green houses (Fig.5). Along one wall of the green house, water is passed through a pad that is usually placed vertically in the wall. Traditionally, the pad was composed of excelsior (**wood shreds**), but today it is commonly made of a **cross-fluted-cellulose material** some what similar in appearance to corrugated card board. Exhaust fans are placed on the opposite wall. Warm outside air is drawn in through the pad. The supplied water in the pad, through the process of evaporation, absorbs heat from the air passing through the pad as well as from surroundings of the pad and frame, thus causing the cooling effect. Khuskhus grass mats can also be used as cooling pads.

4.1.2 Fog cooling system

The fog evaporative cooling system, introduced **in** green houses in 1980, operates on the same cooling principle as the fan and pad cooling system but uses quite different arrangement (Fig.5). A high pressure pumping apparatus generates fog containing water droplets with a mean size of less than 10 microns using suitable nozzles. These droplets are sufficiently small to stay suspended in air while they are evaporating. Fog is dispersed throughout the green

house,

cooling the air everywhere. As this system does not wet the foliage, there is less scope for disease and pest attack. The plants stay dry throughout the process. This system is equally useful for seed germination and propagation since it eliminates the need for a mist system.

Both types of summer evaporative cooling system can reduce the greenhouse air temperature. The fan-and pad system can lower the temperature of incoming air by about 80% of the difference between the dry and wet bulb temperatures while the fog cooling system can lower the temperature by nearly 100% difference. This is, due to the fact that complete

evaporation of the water is not taking place because of bigger droplet size in fad and pad, whereas in the fog cooling system, there will be complete evaporation because of the minute size of the water

droplets. Thus lesser the dryness of the air, greater evaporative cooling is possible.

4.2 Active winter cooling systems

Excess heat can be a problem during the winter. In the winter, the ambient temperature will be below the desired temperature inside the green house. Owing to the green house effect the entrapment of solar heat can rise the temperature to an injurious level if the green house is not ventilated. The actual process in winter cooling is tempering the excessively cold ambient air before it reaches the plant zone. Otherwise, hot and cold spots in the green house will lead to uneven crop timing and quality .This mixing of low temperature ambient air with the warm inside air cools the green house in the winter. Two active winter cooling systems commonly employed are convection tube cooling and horizontal air flow (HAF) fan cooling systems.

4.2.1 Convection tube cooling

The general components of convection tube are the louvered air inlet, a polyethylene convection tube with air distribution holes, a pressurizing fan to direct air in to the tube under pressure, and an exhaust fan to create vacuum. When the air temperature inside the green house exceeds the set point, the exhaust fan starts functioning thus creating vacuum inside the green house. The

louver of the inlet in the gable is then opened through which cold air enters due to the vacuum. The pressurizing fan at the end of the clear polyethylene convection tube, operates to pick up the cool air entering the louver. A proper gap is available for the air entry, as the end of the convection tube is separated from the louvered inlet by 0.3 to 0.6m and the other end of the tube is sealed. Round holes of 5 to 8 cm in diameter are provided in pairs at opposite sides of the tube spaced at 0.5 to 1m along the length of the tube.

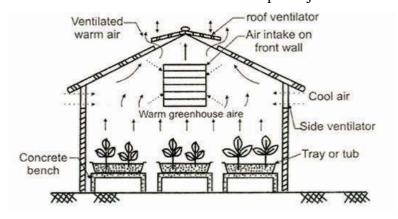
Cold air under pressure in the convection tube shoots out of holes on either side of the tube in turbulent jets. In this system, the cold air mixes with the warm greenhouse air well above the plant height. The cool mixed air, being heavier gently flows down to the floor level, effects the complete cooling of the plant area. The pressurizing fan forcing the incoming cold air in to the convection tube must be capable of moving at least the same volume of air as that of the exhaust fan, thereby avoiding the development of cold spots in the house. When cooling is not required, the inlet louver closes and the pressurizing fan continues to circulate the air within the greenhouse. The process minimizes the temperature gradient at difference levels. The circulation of air using convection tube consumes more power than a circulation system.

4.2.2 Horizontal air flow cooling

HAF cooling system uses small horizontal fans for moving the air mass and is considered to be an alternative to convection tube for the air distribution. In this method the green house may be visualized as a large box containing air and the fans located strategically moves the air in

circular pattern. This system should move air at 0.6 to 0.9 m³/min/m² of the green house floor area. Fractional horse power of fans is 31 to 62 W (1/30 to 1/15hp) with a blade diameter of 41cm are sufficient for operation. The fans should be arranged in such a way that air flows are directed along the length of the greenhouse and parallel to the ground. The fans are placed at 0.6 to 0.9m above plant height and at intervals of 15m. They are arranged such that the air flow is directed by one row of the fans along the length of the greenhouse down one side to the opposite end and then back along the other side by another row of fans (Fig. 6). Greenhouses of larger widths may require more number of rows of fans along its length.

Temperatures at plant height are more uniform with HAF system than with convection tube system. The HAF system makes use of the same exhaust fans, inlet louvers and controls as the convection tube system. The only difference is the use of HAF fans in the place of convection tubes for the air distribution. Cold air entering through the louvers located at the higher level in the gables of the green house is drawn by the air circulation created by the net work of HAF fans and to complete the cycle, proper quantity of air is let out through the exhaust fans. The combined action of louvered inlet, HAF fans and the exhaust


fans distribute the cold air throughout the greenhouse.

4.3 Green house ventilation

Ventilation is the process of allowing the fresh air to enter in to the enclosed area by driving out the air with undesirable properties. In the green house context, ventilation is essential for reducing temperature, replenishing COo₂ and controlling relative humidity. Ventilation requirements for green houses vary greatly, depending on the crop grown and the season of production. The ventilation system can be either a passive system (natural Ventilation) or an active system (forced ventilation) using fans. Usually green houses that are used seasonally employ natural ventilation only. The plant response to specific environment factor is related to the physiological processes and hence the latter affects the yield and quality. Hence, controlling of environment is of great importance to realize the complete benefit of CEA. Manual maintenance of uniform environmental condition inside the green house is very difficult and cumbersome. A poor maintenance results in less crop production, low quality and low income. For effective control of automatic control systems like micro processor and computer are used presently to maintain the environment.

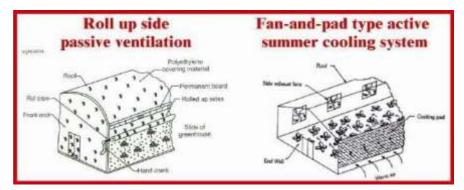
4.3.1 Natural ventilation

In the tropics, the sides of greenhouse structures are often left open for natural ventilation. Tropical greenhouse is primarily a rain shelter, a cover of polyethylene over the crop to prevent rainfall from entering the growing area. This mitigates the problem of foliage diseases. Ventilators were located on both roof slopes adjacent to the ridge and also on both side walls of

the greenhouse. The ventilators on the roof as well as those on the side wall accounts, each about 10% of the total roof area. During winter cooling phase, the south roof ventilator was opened in stages to meet cooling

When greater cooling was

needs.


required, the north ventilator was opened in addition to the south ventilator. In summer cooling phase, the south ventilator was opened first, followed by the north ventilator. As the incoming air moved across the greenhouse, it was warmed by sunlight and by mixing with the warmer greenhouse air. With the increase in temperature, the incoming air becomes lighter and rises up

and flows out through the roof ventilators. This sets up a chimney effect (Fig. 7), which in turn draws in more air from the side ventilators creating a continuous cycle. This system did not adequately cool the greenhouse. On

hot days, the interior walls and floor were frequently injected with water to help cooling.

4.3.1.1 Roll up side passive ventilation in poly houses

In roll up method of ventilation, allowing the air to flow across the plants. The amount of ventilation on one side, or both sides, may be easily adjusted in response to temperature,

prevailing wind and rain (Fig.8). During the periods of excessive heat, it may be necessary to roll the sides up almost to the top. Passive ventilation can also be accomplished by

manually raising or parting the polyethylene sheet. The open vent areas must be covered with screens to prevent virus diseases. The holes must be large enough to permit free flow of air. Screens with small holes blocks air movement and cause a build up of dust. Rollup side passive ventilation on plastic greenhouses is only effective on free standing greenhouses and not on gutter connected greenhouses.

4.3.2 Forced Ventilation

In forced or active ventilation, mechanical devices such as fans are used to expel the air. This type of ventilation can achieve uniform cooling. These include summer fan-and-pad and fog cooling systems and the winter convection tube and horizontal airflow systems. For mechanical ventilation, low pressure, medium volume propeller blade fans, both directly connected and belt driven are used for greenhouse ventilation. They are placed at the end of the green house opposite to the air intake, which is normally covered by gravity or motorized louvers. The fans vents, or louvers, should be motorized, with their action controlled by fan operation. Motorized louvers prevent the wind from opening the louvers, especially when heat is being supplied to the green house. Wall vents should be placed continuously across the end of the greenhouse to avoid hot areas in the crop zone.

Evaporative cooling in combination with the fans is called as fan-and-pad cooling system. The fans and pads are usually arranged on opposite walls of the greenhouse (Fig.8). The common types of cooling pads are made of excelsior (wood fiber), aluminum fiber, glass fiber,

plastic fiber and cross-fluted cellulose material. Evaporative cooling systems are especially efficient in low humidity environments. There is growing interest in building greenhouses combining both passive (natural) and active (forced) systems of ventilation. Passive ventilation is utilized as the first stage of cooling, and the fan-pad evaporative cooling takes over when the passive system is not providing the needed cooling. At this stage, the vents for natural ventilation are closed. When both options for cooling are designed in greenhouse construction, initial costs of installation will be more. But the operational costs are minimized in the long run, since natural ventilation will, most often meet the needed ventilation requirements.

Fogging systems is an alternative to evaporative pad cooling. They depend on absolutely clean water, Free of any soluble salts, in order to prevent plugging of the mist nozzles. Such cooling systems are not as common as evaporative cooling pads, but when they become more cost competitive, they will be adopted widely. Fogging systems are the second stage of cooling when passive systems are inadequate.

4.3.3 Microprocessors

Dedicated microprocessors can be considered as simple computers. A typical microprocessor will have a keypad and a two or three line liquid crystal display of, sometimes, 80-character length for programming. They generally do not have a floppy disk drive. They have more output connections and can control up to 20 devices. With this number of devices, it is cheaper to use a microprocessor. They can receive signals of several types, such as, temperature, light intensity, rain and wind speed. They permit integration of the diverse range of devices, which is not possible with thermostats. The accuracy of the microprocessor for temperature control is quite good. Unlike a thermostat, which is limited to a bimetallic strip or metallic tube for temperature sensing and its mechanical displacement for activation, the microprocessor often uses a thermistor. The bimetallic strip sensor has less reproducibility and a greater range between the ON and OFF steps. Microprocessors can be made to operate various devices, for instance, a microprocessor can operate the ventilators based on the information from the sensor for the wind direction and speed. Similarly a rain sensor can also activate the ventilators to prevent the moisture sensitive crop from getting wet. A microprocessor can be set to activate the CO₂ generator when the light intensity exceeds a given set point, a minimum level for photosynthesis.

4.3.4 Computers

Now-a-days, computer control systems are common in greenhouse installation throughout Europe, Japan and the United States. Computer systems can provide fully integrated control of temperature, humidity, irrigation and fertilization, CO₂, light and shade levels for virtually any size growing facility. Precise control over a growing operation enables growers to realize saving

of 15 to 50% in energy, water, chemical and pesticide applications. Computer controls normally help to achieve greater plant consistency, on-schedule production, higher overall plant quality and environmental purity.

A computer can control hundreds of devices within a green house (vents, heaters, fans, hot water mixing valves, irrigation valves, curtains and lights) by utilizing dozens of input parameters, such as outside and inside temperatures, humidity, outside wind direction and velocity, CO₂ levels and even the time of the day or night. Computer systems receive signals from all sensors, evaluate all conditions and send appropriate commands every minute to each piece of equipment in the greenhouse range thus maintaining ideal conditions in each of the various independent greenhouse zones defined by the grower (Fig.9). Computers collect and record data provided by greenhouse production managers. Such a data acquisition system will enable the grower to gain a comprehensive knowledge of all factors affecting the quality and timeliness of the product. A computer produces graphs of past and current environmental conditions both inside and outside the greenhouse complex. Using a data printout option, growers can produce reports and summaries of environmental conditions such as temperature, humidity and the CO₂ status for the given day, or over a longer period of time for current or later use.

As more environmental factor in the greenhouse is controlled, there comes a stage when individual controls cannot be coordinated to prevent system overlap. An example is the greenhouse thermostat calling for heating while the exhaust fans are still running. With proper software program, which uses the environmental parameters as input from different sensors, can effectively coordinate all the equipment without overlap and precisely control all parameters affecting plant development as desired. Despite the attraction of the computer systems, it should be remembered that the success of any production system is totally dependent on the grower's

knowledge of the system and the crop management. Computers can only assist by adding precision to the overall greenhouse production practice, and they are only as effective as the software it runs and the effectively of the operator. The advantages and disadvantages of computerized control system are as follows:

Advantages

- 1. The computer always knows what all systems are doing and, if programmed properly, can coordinate these systems without overlap to provide the optimum environment.
- 2. The computer can record the environmental data, which can be displayed to show current conditions or stored and processed ones to provide a history of the cropping period, and if desired it may also be displayed in table or graph form.

- 3. A high-speed computer with networking facility can control several remotely located greenhouses, by placing the computer in a central area and the results can be monitored frequently by the management.
- 4. With proper programming and sensing systems, the computer can anticipate weather changes and make adjustments in heating and ventilation systems, thus saving the energy.
 - 5. The computer can be programmed to sound an alarm if conditions become unacceptable to and to detect sensor and equipment failure.

Disadvantages

- 1. High initial cost investment.
- 2. Requires qualified operators.
- 3. High maintenance, care and precautions are requ
- 4. Not economical for small scale and seasonal prod

