2.1 ELECTRIC POTENTIAL

ELECTRIC FILED OR ELECTRIC FIELD INTENSITY:

The electric field or electric field intensity is defined as the electric force per unit charge .It is given by

$$
E=\frac{F}{\boldsymbol{q}}
$$

According to coulomb's law

$$
F=\frac{Q q}{4 \pi \varepsilon r^{2}}
$$

Electric Filed

$$
E=\frac{F}{q}
$$

Substitute \boldsymbol{F} value in above equation

$$
\begin{gathered}
E=\frac{\frac{Q q}{4 \pi \varepsilon r^{2}}}{q} \\
E=\frac{Q q}{4 \pi \varepsilon r^{2} q} \\
E=\frac{Q}{4 \pi \varepsilon r^{2}} V / n
\end{gathered}
$$

The another unit of electric field is Volts/meter

ELECTRIC POTENTIAL DUE TO LINE CHARGE:

Considered uniformly charged line of length \boldsymbol{L} whose linear charge density is $\boldsymbol{\rho}_{\boldsymbol{l}}$ Coulomb/meter. Consider a small element $\boldsymbol{d} \boldsymbol{l}$ at a distance \boldsymbol{l} from one end of the charged line as shown in figure 2.1.1 . Let \boldsymbol{P} be any point at a distance \boldsymbol{r} from the element $\boldsymbol{d} \boldsymbol{l}$.

Figure 2.1.1 Evaluation of the electric potential V due to a line charge
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-114]
The electric field at a point \boldsymbol{P} due to the charge element $\boldsymbol{\rho} \boldsymbol{d} \boldsymbol{l}$ is given

$$
d E=\frac{\rho_{l} d l}{4 \pi \varepsilon r^{2}}
$$

The \boldsymbol{x} and \boldsymbol{y} components of electric field $\boldsymbol{d} \boldsymbol{E}$ are given by

From the above diagram find $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ and $\cos \boldsymbol{\theta}$

$$
\begin{gathered}
\sin \theta=\frac{d E_{x}}{d E} \\
d E_{x}=d E \sin \theta \\
\cos \theta=\frac{d E_{y}}{d E} \\
d E_{y}=d E \cos \theta
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{E}$ expression in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{aligned}
& d E_{x}=\frac{\rho_{l} d l \sin \theta}{4 \pi \varepsilon r^{2}} \\
& d E_{y}=\frac{\rho_{l} d l \cos \theta}{4 \pi \varepsilon r^{2}}
\end{aligned}
$$

From the above diagram find $\tan \boldsymbol{\theta}$

$$
\begin{aligned}
& \tan \theta=\frac{h}{x-l} \\
& x-l=\frac{h}{\tan \theta} \\
& x-l=h \cot \theta
\end{aligned}
$$

Differentiate above equation on both sides

$$
\begin{gathered}
0-d l=h\left(-\operatorname{cosec}^{2} \theta\right) \\
-d l=-h\left(\operatorname{cosec}^{2} \theta\right) \\
d l=h\left(\operatorname{cosec}^{2} \theta\right) \cdot d \theta
\end{gathered}
$$

From the above diagram find $\sin \boldsymbol{\theta}$

$$
\begin{gathered}
\sin \theta=\frac{h}{r} \\
r=\frac{h}{\sin \theta} \\
r=h \operatorname{cosec} \theta
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{l}$ and \boldsymbol{r} value in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
d E_{x}=\frac{\rho_{l} d l \sin \theta}{4 \pi \varepsilon r^{2}}
$$

$$
\begin{gathered}
d E_{x}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \sin \theta}{4 \pi \varepsilon(h \operatorname{cosec} \theta)^{2}} \\
d E_{x}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \sin \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta} \\
d E_{x}=\frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h}
\end{gathered}
$$

Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ considered the limit as $\boldsymbol{\alpha}_{\mathbf{1}}$ to $\boldsymbol{\pi}-\boldsymbol{\alpha}_{\mathbf{2}}$
The electric field $\boldsymbol{E}_{\boldsymbol{x}}$ due to the entire length of line charge is given by

$$
\begin{aligned}
& \int d E_{x}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h} \\
& E_{x}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h} \\
& E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h} \int_{\alpha_{1}}^{\pi-\alpha_{2}} \sin \theta d \theta \\
& E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[-\cos \theta]_{\alpha_{1}}^{\pi-\alpha_{2}} \\
& E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[-\cos \left(\pi-\alpha_{2}\right)-\left(\cos \alpha_{1}\right)\right] \\
& E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{2}\right)+\left(\cos \alpha_{1}\right)\right] \\
& E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{1}\right)+\left(\cos \alpha_{2}\right)\right]
\end{aligned}
$$

Substitute $\boldsymbol{d} \boldsymbol{l}$ and \boldsymbol{r} value in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{aligned}
& d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon(h \operatorname{cosec} \theta)^{2}} \\
& d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta}
\end{aligned}
$$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta} \\
d E_{y}=\frac{\rho_{l} d \theta \cos \theta}{4 \pi \varepsilon h} \\
d E_{y}=\frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h}
\end{gathered}
$$

Similarly for \boldsymbol{y} component of E
Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ consider the limit as $\boldsymbol{\alpha}_{\boldsymbol{1}}$ to $\boldsymbol{\pi}-\boldsymbol{\alpha}_{\mathbf{2}}$
The electric field $\boldsymbol{E}_{\boldsymbol{y}}$ due to the entire length of line charge is given by

$$
\begin{gathered}
\int d E_{y}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h} \\
E_{y}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h} \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h} \int_{\alpha_{1}}^{\pi-\alpha_{2}} \cos \theta d \theta \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[\sin \theta]_{\alpha_{1}}^{\pi-\alpha_{2}} \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\sin \left(\pi-\alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]
\end{gathered}
$$

Case (i): If the point P is at bisector of a line, then $\alpha_{1}=\alpha_{2}=\alpha$
$\boldsymbol{E}_{\boldsymbol{y}}=\mathbf{0} \quad \boldsymbol{E}$ becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{1}\right)+\left(\cos \alpha_{2}\right)\right] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\cos \alpha)+(\cos \alpha)]
\end{gathered}
$$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}(2 \cos \alpha) \\
E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha) \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]
\end{gathered}
$$

Substitute $\alpha_{1}=\alpha_{2}=\alpha$
\boldsymbol{E} becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\sin \alpha)-(\sin \alpha)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[0] \\
E_{y}=0
\end{gathered}
$$

$$
\begin{gathered}
E=E_{x} \\
E=E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha) \\
E=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha)
\end{gathered}
$$

Case (ii): If the line is infinitely long then $\alpha_{1}=\alpha_{2}=\boldsymbol{\alpha}=\mathbf{0}$
$\boldsymbol{E}_{\boldsymbol{y}}=\mathbf{0} \quad \boldsymbol{E}$ becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{1}\right)+\left(\cos \alpha_{2}\right)\right] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\cos 0)+(\cos 0)] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(1)+(1)] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[2] \\
E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}
\end{gathered}
$$

$$
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]
$$

Substitute $\alpha_{1}=\alpha_{2}=\alpha=\mathbf{0}$

$$
\begin{gathered}
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\sin 0)-(\sin 0)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(0)-(0)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[0] \\
E_{y}=0
\end{gathered}
$$

\boldsymbol{E} becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E=E_{x} \\
E=E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h} \\
E=\frac{\rho_{l}}{2 \pi \varepsilon h}
\end{gathered}
$$

Work done

$$
\boldsymbol{n}=-\int_{r_{1}}^{r_{2}} q E d h
$$

Substitute \boldsymbol{E} equation in $\boldsymbol{И}$

$$
\begin{gathered}
\boldsymbol{\Lambda}=--\int_{r_{1}}^{r_{2}} q E d h \\
И=-\int_{r_{1}}^{r_{2}} q \frac{\rho_{l}}{2 \pi \varepsilon h} d h \\
\boldsymbol{U}=-\frac{q \rho_{l}}{2 \pi \varepsilon} \int_{r_{1}}^{r_{2}} \frac{1}{h} d h \\
И=-\frac{q \rho_{l}}{2 \pi \varepsilon}[\ln h]_{r_{1}}^{r_{2}}
\end{gathered}
$$

$$
u=-\frac{q \rho_{l}}{2 \pi \varepsilon}\left[\left(\ln r_{2}\right)-\left(\ln r_{1}\right)\right]
$$

Multiply the common minus term with inside terms

$$
\begin{gathered}
W=\frac{\boldsymbol{q} \rho_{l}}{2 \boldsymbol{\pi} \varepsilon}\left[-\left(\ln r_{2}\right)-\left(-\ln r_{1}\right)\right] \\
W=\frac{\boldsymbol{q} \rho_{\boldsymbol{l}}}{2 \pi \varepsilon}\left[-\left(\ln r_{2}\right)+\left(\ln r_{1}\right)\right] \\
\boldsymbol{h}=\frac{\boldsymbol{q} \rho_{l}}{2 \boldsymbol{\pi} \varepsilon}\left[\left(\ln r_{1}\right)-\left(\ln r_{2}\right)\right] \\
\boldsymbol{U}=\frac{\boldsymbol{q} \rho_{l}}{2 \pi \varepsilon}\left[\frac{r_{1}}{r_{2}}\right]
\end{gathered}
$$

Electric Potential Difference

$$
V=\frac{W}{q}
$$

Substitute \boldsymbol{V} value in above equation

$$
\begin{gathered}
V=\frac{W}{q} \\
V=\frac{\frac{q \rho_{l}}{2 \pi \varepsilon}\left[\frac{r_{1}}{r_{2}}\right]}{q} \\
V=\frac{q \rho_{l}}{2 \pi \varepsilon q}\left[\frac{r_{1}}{r_{2}}\right] \\
V=\frac{\rho_{l}}{2 \pi \varepsilon}\left[\frac{r_{1}}{r_{2}}\right]
\end{gathered}
$$

ELECTRIC POTENTIAL DUE TO CIRCULAR DISC:

Consider a circular disc of radius \boldsymbol{R} is charged uniformly with a charge density of $\boldsymbol{\rho}_{\boldsymbol{s}}$ coulomb $/ \boldsymbol{r}^{2}$.Let \boldsymbol{P} be any point on the axis of the disc at a distance from the centre. Consider an annular ring of radius \boldsymbol{r} and of radial thickness $\boldsymbol{d} \boldsymbol{r}$ as shown in figure 2.1.2.The area of the annular ring is $\boldsymbol{d s}=\mathbf{2 \pi r d r}$.

Figure 2.1.2 Evaluation of the \boldsymbol{E} field due to a charged ring
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-120]
The field intensity at point \boldsymbol{P} due to the charged annular ring is given by

$$
d E=\frac{\rho_{S} d s}{4 \pi \varepsilon d^{2}}
$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ and $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$
The horizontal components of angular ring is zero

$$
\begin{gathered}
d E_{\chi}=0 \\
E_{x}=0
\end{gathered}
$$

The horizontal components of angular ring $\boldsymbol{E}_{\boldsymbol{y}}$ have to find for circular ring. the vertical component is given by

$$
d E_{y}=\frac{\rho_{s} d s \cos \theta}{4 \pi \varepsilon d^{2}}
$$

From the above diagram find $\tan \boldsymbol{\theta}$ and $\sin \boldsymbol{\theta}$

$$
\tan \theta=\frac{r}{h}
$$

$$
r=h \tan \theta
$$

$$
\sin \theta=\frac{r}{d}
$$

$$
d=\frac{r}{\sin \theta}
$$

Assume

$$
\begin{aligned}
d s & =2 \pi r d r \\
d E_{y} & =\frac{\rho_{S} d s \cos \theta}{4 \pi \varepsilon d^{2}}
\end{aligned}
$$

Substitute $\boldsymbol{d} \boldsymbol{s}$ in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
d E_{y}=\frac{\rho_{S} 2 \pi r d r \cos \theta}{4 \pi \varepsilon d^{2}}
$$

$$
r=h \tan \theta
$$

Differentiate above equation

$$
d r=h \sec ^{2} \theta d \theta
$$

Substitute $\boldsymbol{d} \boldsymbol{r}$ and \boldsymbol{d} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{aligned}
& d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon d^{2}} \\
& d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon\left(\frac{r}{\sin \theta}\right)^{2}}
\end{aligned}
$$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) d \theta \cos \theta \sin ^{2} \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2} \cos ^{2} \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta d \theta}{4 \pi \varepsilon r^{2} \cos \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r}
\end{gathered}
$$

Substitute \boldsymbol{r} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon h \tan \theta} \\
d E_{y}=\frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon}
\end{gathered}
$$

Integrate the above equation $\boldsymbol{d} E_{y}$ considered the limit as $\mathbf{0}$ to $\boldsymbol{\alpha}$

$$
\begin{gathered}
\int d E_{y}=\int_{0}^{\alpha} \frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon} \\
\int d E_{y}=\frac{\rho_{S}}{2 \varepsilon} \int_{0}^{\alpha} \sin \theta d \theta \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[-\cos \theta]_{0}^{\alpha}
\end{gathered}
$$

$$
\begin{gathered}
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)-(-\cos 0)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)+(1)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(1)-(-\cos \alpha)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

The total electric field

$$
\begin{gathered}
E=E_{x}+E_{y} \\
E=E_{x}+E_{y} \\
E_{x}=0 \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=0+\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

The electric potential V at any point P due to charge disc

$$
V=-\int_{d}^{0} E d x
$$

Substitute \boldsymbol{E} value in above equation

$$
V=-\int_{d}^{0} \frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] d x
$$

Substitute $\boldsymbol{\alpha}=\boldsymbol{\theta}$ in above equation

$$
V=-\int_{d}^{0} \frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta] d x
$$

Integrate above equation with respect to \boldsymbol{x}

$$
\begin{aligned}
& V=-\frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta] \int_{d}^{0} d x \\
& V=-\frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta][x]_{d}^{0} \\
& V=-\frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta][(0)-(d)] \\
& V=-\frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta][-(d)] \\
& V=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \theta][(d)] \\
& V=\frac{\rho_{S} d}{2 \varepsilon}[1-\cos \theta] \\
& d^{2}=R^{2}+h^{2} \\
& d=\sqrt{R^{2}+h^{2}} \\
& \cos \theta=\frac{h}{d}
\end{aligned}
$$

Substitute \boldsymbol{d} value in above equation

$$
\cos \theta=\frac{h}{\sqrt{R^{2}+h^{2}}}
$$

Substitute $\cos \theta$ equation in V

$$
\begin{gathered}
V==\frac{\rho_{S} d}{2 \varepsilon}[1-\cos \theta] \\
V=\frac{\rho_{S} \sqrt{ } \frac{\overline{R^{2}+h^{2}}}{2 \varepsilon}\left[1-\frac{h}{\sqrt{R^{2}+h^{2}}}\right]}{V=\frac{\rho_{S} \sqrt{R^{2}+h^{2}}}{2 \varepsilon} \times\left[\frac{\sqrt{R^{2}+h^{2}}-h}{\sqrt{R^{2}+h^{2}}}\right]} \\
V=\frac{\rho_{S} \sqrt{\frac{R^{2}+h^{2}}{2 \varepsilon}} \times\left(\frac{1}{\sqrt{R^{2}+h^{2}}}\right) \times\left[\sqrt{R^{2}+h^{2}}-h\right]}{V=\frac{\rho_{S}}{2 \varepsilon}\left[\sqrt{R^{2}+h^{2}}-h\right]}
\end{gathered}
$$

ELECTRIC POTENTIAL DUE TO INFINITE SHEET OF CHARGE:

Consider an infinite plane sheet which is uniformly charged with a charge density of $\boldsymbol{\rho}_{s}$ Coulom; $\boldsymbol{n}^{\mathbf{2}}$ as shown in figure 2.1.3.

Figure 2.1.3 Evaluation of the E field due to an infinite sheet of charge
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-116]

The field intensity at any point \boldsymbol{P} due to infinite plane sheet of charge can be evaluated by applying expression of charged circular disc.
The field intensity at point \boldsymbol{P} due to the charged annular ring is given by

$$
d E=\frac{\rho_{S} d s}{4 \pi \varepsilon d^{2}}
$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ and $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ The horizontal components of angular ring is zero

$$
\begin{gathered}
d E_{x}=0 \\
E_{x}=0
\end{gathered}
$$

The horizontal components of angular ring $\boldsymbol{E}_{\boldsymbol{y}}$ have to find for circular ring. the vertical component is given by

$$
d E_{y}=\frac{\rho_{s} d s \cos \theta}{4 \pi \varepsilon d^{2}}
$$

From the above diagram find $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$ and $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$

$$
\begin{aligned}
& \tan \theta=\frac{r}{h} \\
& r=h \tan \theta
\end{aligned}
$$

$$
\sin \theta=\frac{r}{d}
$$

$$
d=\frac{r}{\sin \theta}
$$

Assume

$$
\begin{gathered}
d s=2 \pi r d r \\
d E_{y}=\frac{\rho_{s} d s \cos \theta}{4 \pi \varepsilon d^{2}}
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{s}$ in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{aligned}
d E_{y}= & \frac{\rho_{S} 2 \pi r d r \cos \theta}{4 \pi \varepsilon d^{2}} \\
r & =h \tan \theta
\end{aligned}
$$

Differentiate above equation

$$
d r=h \sec ^{2} \theta d \theta
$$

Substitute $\boldsymbol{d} \boldsymbol{r}$ and \boldsymbol{d} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon d^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon\left(\frac{r}{\sin \theta}\right)^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) d \theta \cos \theta \sin ^{2} \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2} \cos \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin \theta d \theta}{4 \pi \varepsilon r^{2} \cos ^{2} \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r}
\end{gathered}
$$

Substitute \boldsymbol{r} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{aligned}
& d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r} \\
& d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon h \tan \theta}
\end{aligned}
$$

$$
d E_{y}=\frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon}
$$

Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ consider the limit as $\mathbf{0}$ to $\boldsymbol{\alpha}$

$$
\begin{gathered}
\int d E_{y}=\int_{0}^{\alpha} \frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon} \\
\int d E_{y}=\frac{\rho_{S}}{2 \varepsilon} \int_{0}^{\alpha} \sin \theta d \theta \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[-\cos \theta]_{0}^{\alpha} \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)-(-\cos 0)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)+(1)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(1)-(-\cos \alpha)] \\
E_{y}==\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

The total electric field

$$
\begin{gathered}
E=E_{x}+E_{y} \\
E=E_{x}+E_{y} \\
E_{x}=0 \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=0+\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

The electric field due to infinite uniformly charge sheet $\boldsymbol{\alpha}=\mathbf{9 0}^{\circ}$

$$
\begin{gathered}
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E==\frac{\rho_{S}}{2 \varepsilon}\left[1-\cos 90^{\circ}\right] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-0] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1] \\
E=\frac{\rho_{S}}{2 \varepsilon}
\end{gathered}
$$

The electric potential V at any point P is given by

$$
V=-\int_{d}^{0} E d x
$$

Substitute \boldsymbol{E} value in above equation

$$
V=-\int_{d}^{0} \frac{\rho_{S}}{2 \varepsilon} d x
$$

Substitute $\boldsymbol{\alpha}=\boldsymbol{\theta}$ in above equation

$$
V=-\int_{d}^{0} \frac{\rho_{S}}{2 \varepsilon} d x
$$

Integrate above equation with respect to \boldsymbol{x}

$$
\begin{gathered}
V=-\frac{\rho_{S}}{2 \varepsilon} \int_{d}^{0} d x \\
V=-\frac{\rho_{S}}{2 \varepsilon}[x]_{d}^{0} \\
V=-\frac{\rho_{S}}{2 \varepsilon}[(0)-(d)] \\
V=-\frac{\rho_{S}}{2 \varepsilon}[-(d)]
\end{gathered}
$$

$$
\begin{gathered}
V=\frac{\rho_{S}}{2 \varepsilon}[(d)] \\
V=\frac{\rho_{S} d}{2 \varepsilon}
\end{gathered}
$$

$$
\begin{aligned}
& d^{2}=R^{2}+h^{2} \\
& d=\sqrt{R^{2}+h^{2}}
\end{aligned}
$$

Substitute \boldsymbol{d} equation in \boldsymbol{V}

$$
\begin{gathered}
V=\frac{\rho_{S} d}{2 \varepsilon} \\
V:=\frac{\rho_{S} \sqrt{R^{2}+h^{2}}}{2 \varepsilon} \\
V=\frac{\rho_{S}}{2 \varepsilon}\left[\sqrt{R^{2}+h^{2}}\right] \text { volts }
\end{gathered}
$$

COAXIAL CYLINDER

Consider the two coaxial cylindrical conductors forming a coaxial cable. The radius of the inner cylinder is \boldsymbol{a} while the radius of the outer cylinder is \boldsymbol{b}. The coaxial cable is shown in figure 2.1.4.The length of cable is \boldsymbol{L}.

The line charge density of inner cylinder is $\boldsymbol{\rho}_{\boldsymbol{l}}$. The line charge density of inner cylinder is $-\boldsymbol{\rho}_{\boldsymbol{l}}$.

Figure 2.1.4 Coaxial Cable
[Source: "Electromagnetic Theory" by U.A.Bakshi, page-3.19]
In outer side the integral of electric flux density over a space is equal to charge.

$$
\int D d_{s}=Q
$$

The line charge density

$$
\begin{gathered}
\rho_{l}=\frac{Q}{l} \quad \text { Coulomb,meter }\left(\boldsymbol{c}^{\prime} \boldsymbol{n}\right) \\
\rho_{l}=\frac{Q}{l} \\
Q=\rho_{l} l
\end{gathered}
$$

Substitute \boldsymbol{Q} in $\int \boldsymbol{D} \boldsymbol{d}_{\boldsymbol{s}}$

$$
\begin{aligned}
& \int D d_{s}=Q \\
& \int D d_{s}=\rho_{l} l
\end{aligned}
$$

Substitute \boldsymbol{D} 'in $\int \boldsymbol{D} \boldsymbol{d}_{\boldsymbol{s}}$ equation

$$
\begin{gathered}
D=\varepsilon E \\
\int \varepsilon E d_{s}=\rho_{l} l \\
\varepsilon E \int d_{s}=\rho_{l} l \\
\int d_{s}=S=A
\end{gathered}
$$

Substitute $\int \boldsymbol{d}_{\boldsymbol{s}}$ `value in above equation

$$
\begin{gathered}
\varepsilon E A=\rho_{l} l \\
E=\frac{\rho_{l} l}{\varepsilon A}
\end{gathered}
$$

Area of Cylinder

$$
A=2 \pi r l
$$

$$
E=\frac{\rho_{l} l}{\varepsilon 2 \pi r l}
$$

$$
E=\frac{\rho_{l}}{\varepsilon 2 \pi r}
$$

$$
E=\frac{\rho_{l}}{2 \pi \varepsilon r}
$$

The potential difference between the two cylinders

$$
V=-\int_{b}^{a} E d r
$$

Substitute \boldsymbol{E} in \boldsymbol{V}

$$
\begin{gathered}
V=-\int_{b}^{a} \frac{\rho_{l}}{2 \pi \varepsilon r} d r \\
V=-\frac{\rho_{l}}{2 \pi \varepsilon} \int_{b}^{a} \frac{1}{r} d r \\
V=-\frac{\rho_{l}}{2 \pi \varepsilon}[\ln r]_{b}^{a} \\
V=-\frac{\rho_{l}}{2 \pi \varepsilon}[(\ln a)-(\ln b)] \\
V=\frac{\rho_{l}}{2 \pi \varepsilon}[-(\ln a)-(-\ln b)] \\
V=\frac{\rho_{l}}{2 \pi \varepsilon}[(\ln b)-(\ln a)]
\end{gathered}
$$

$$
V=\frac{\rho_{l}}{2 \pi \varepsilon}\left[\ln \left(\frac{b}{a}\right)\right]
$$

The electric fields can b written as in terms of potential

$$
V=\frac{\rho_{l}}{2 \pi \varepsilon}\left[\ln \left(\frac{b}{a}\right)\right]
$$

Substitute \boldsymbol{E} expression in above equation

$$
\begin{gathered}
V=\frac{\rho_{l}}{2 \pi \varepsilon}\left[\ln \left(\frac{b}{a}\right)\right] \\
\frac{\rho_{l}}{2 \pi \varepsilon}=E r \\
V=-\frac{\rho_{l}}{2 \pi \varepsilon}\left[\ln \left(\frac{b}{a}\right)\right] \\
V:=E r\left[\ln \left(\frac{b}{a}\right)\right] \\
E=\frac{V}{r\left[\ln \left(\frac{b}{a}\right)\right]}
\end{gathered}
$$

ELECTRIC POTENTIAL DUE TO SHELL OF CHARGE

Electric Potential Single Shell of Charge:

A positive charge \boldsymbol{Q} is uniformly distributed over a spherical surface of radius as shown in figure.

By applying Gauss's law inside the shell the integral of flux density \boldsymbol{D} over a spherical surface is zero as no charge is enclosed by the surface.

$$
\begin{gathered}
\oint D d s=0 \quad r<a \\
D=\varepsilon \boldsymbol{E}
\end{gathered}
$$

Substitute \boldsymbol{D} expression in $\oint \boldsymbol{D} \boldsymbol{d} \boldsymbol{s}$

$$
\oint D d s=0
$$

$$
\begin{aligned}
& \oint \varepsilon E d s=0 \\
& \varepsilon \oint E d s=0 \\
& E=0 \quad r<a
\end{aligned}
$$

Electric field is zero inside the shell.
By applying Gauss's law just outside the shell, the integral of flux density \boldsymbol{D} over a spherical surface is the charge of the shell.

$$
\begin{gathered}
\oint_{s} D d s=Q \\
D=\varepsilon E
\end{gathered}
$$

Substitute \boldsymbol{D} expression in $\oint \boldsymbol{D} \boldsymbol{d} \boldsymbol{s}$

$$
\begin{gathered}
\oint_{s} D d s=Q \\
\oint_{s} \varepsilon E d s=Q \\
\varepsilon E \oint_{s} d s=Q \\
\oint_{S} d s=S=A \\
\oint_{s} d s=A
\end{gathered}
$$

Area of sphere

$$
A=4 \pi r^{2}
$$

Substitute \boldsymbol{A} expression in above equation

$$
\oint_{s} d s=A
$$

$$
\oint_{s} d s=4 \pi r^{2}
$$

Substitute $\oint_{\boldsymbol{s}} \boldsymbol{d} \boldsymbol{s}$ expression in $\oint \boldsymbol{D} \boldsymbol{d} \boldsymbol{s}$ equation

$$
\begin{gathered}
\varepsilon E \oint_{s} d s=Q \\
\varepsilon E 4 \pi r^{2}=Q \\
E=\frac{Q}{4 \pi \varepsilon r^{2}}
\end{gathered}
$$

This is the electric field just outside the spherical shell
The potential just outside the shell is

$$
V=-\int E d r
$$

Substitute \boldsymbol{V} expression in \boldsymbol{E} equation

$$
\begin{gathered}
V=-\int E d r \\
V=-\int \frac{Q}{4 \pi \varepsilon r^{2}} d r \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}} \int \frac{1}{r^{2}} d r \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}} \int r^{-2} d r
\end{gathered}
$$

Integrate the above equation \boldsymbol{V}

$$
\begin{gathered}
V:=-\frac{Q}{4 \pi \varepsilon} \frac{r^{-2+1}}{-2+1} \\
V:=-\frac{Q}{4 \pi \varepsilon} \frac{r^{-1}}{(-1)} \\
V=-\frac{Q}{4 \pi \varepsilon} \frac{-1}{(r)} \\
V=\frac{Q}{4 \pi \varepsilon \times r}
\end{gathered}
$$

$$
V=\frac{Q}{4 \pi \varepsilon r} \quad r>a
$$

At $\boldsymbol{r}=\boldsymbol{a}$ electric potential on the sphere

$$
V=\frac{Q}{4 \pi \varepsilon r}
$$

Substitute $\boldsymbol{r}=\boldsymbol{a}$ in above equation

$$
V=\frac{Q}{4 \pi \varepsilon a}
$$

Since electric field \boldsymbol{E} inside the shell is zero. It requires no work to move a test charge inside the shell and hence the electric potential \boldsymbol{V} inside the shell is constant.

$$
\begin{gathered}
V=-\int E d r=\text { Constant } \\
V=\frac{Q}{4 \pi \varepsilon a} \quad r<a
\end{gathered}
$$

ELECTRIC POTENTIAL TWO CONCENTRIC SHELL OF CHARGE:

Electric field intensity between two shells:
Consider two spherical shells of radius \boldsymbol{a} and \boldsymbol{b}.Let $\boldsymbol{Q}_{\mathbf{1}}$ and $\boldsymbol{Q}_{\mathbf{2}}$ be the charges uniformly distributed over the inner shell of radius \boldsymbol{a} and outer shell of radius \boldsymbol{b} respectively.

By applying Gauss's law the line integral of flux density \boldsymbol{D} over a closed surface is zero.

$$
\begin{aligned}
\oint D d s & =0 \quad r<a \\
D & =\boldsymbol{\varepsilon} E
\end{aligned}
$$

Substitute \boldsymbol{D} expression in $\oint \boldsymbol{D} \boldsymbol{d s}$

$$
\begin{aligned}
& \oint D d s=0 \\
& \oint \varepsilon E d s=0 \\
& \varepsilon \oint E d s=0 \\
& E=0 \quad r<a
\end{aligned}
$$

Electric field is zero inside the shell.
The electric field intensity between the two shells $(a<r<b)$

$$
\boldsymbol{E}=\frac{\boldsymbol{Q}_{1}}{4 \pi \varepsilon r^{2}} \quad(\boldsymbol{a}<r<b)
$$

The electric field intensity just outside both shells due to \boldsymbol{Q}_{1} and $\boldsymbol{Q}_{2} \quad(\boldsymbol{r}>b>a)$

$$
\boldsymbol{E}=\frac{\boldsymbol{Q}_{1}+\boldsymbol{Q}_{2}}{4 \boldsymbol{\pi} \boldsymbol{\varepsilon} \boldsymbol{r}^{2}} \quad(\boldsymbol{r}>b>a)
$$

At the inner shell $\boldsymbol{r}=\boldsymbol{a}$ the electric field intensity

$$
E=\frac{Q_{1}}{4 \pi \varepsilon r^{2}}
$$

At the outer shell $\boldsymbol{r}=\boldsymbol{b}$ the electric field intensity

$$
E=\frac{Q_{1}+Q_{2}}{4 \pi \varepsilon r^{2}}
$$

The variation of electric field intensity is shown in figure

The potential between two concentric shells:
The potential difference between the two shells is given by

$$
V=-\int_{b}^{a} E d r
$$

Substitute \boldsymbol{E} expression in above equation

$$
\begin{gathered}
E=\frac{Q}{4 \pi \varepsilon r^{2}} \\
V=-\int_{b}^{a} \frac{Q}{4 \pi \varepsilon r^{2}} d r
\end{gathered}
$$

Integrate above equation with respect to r

$$
\begin{gathered}
V=-\int_{b}^{a} \frac{Q}{4 \pi \varepsilon r^{2}} d r \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}} \int_{b}^{a} \frac{1}{r^{2}} d r \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}} \int_{b}^{a} r^{-2} d r \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}}\left[\frac{r^{-2+1}}{-2-1}\right]_{b}^{a} \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}}\left[\frac{r^{-1}}{(-1)}\right]_{b}^{a} \\
V=-\frac{Q}{4 \pi \varepsilon r^{2}}\left[\frac{(-1)}{r}\right]_{b}^{a} \\
V=\frac{Q}{4 \pi \varepsilon r^{2}}\left[\left(\frac{1}{a}\right)-\left(\frac{1}{b}\right)\right] \\
\left.V=\frac{Q}{4 \pi \varepsilon r^{2}}\left[\frac{1}{a}-\frac{1}{b}\right]_{b}^{a}\right]_{b}^{a} \\
V
\end{gathered}
$$

If $\boldsymbol{Q}_{\mathbf{1}}$ be the charge distributed over inner shell and $\boldsymbol{Q}_{\mathbf{2}}$ be the charge distributed over outer shell, then potential difference

$$
V=\frac{1}{4 \pi \varepsilon r^{2}}\left[\frac{Q_{1}}{a}-\frac{Q_{2}}{b}\right]
$$

