DC Response of RLC Series Circuit :
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Fig. 4.10 RLC series circuit

The RLC series circuit is shown above which is excited by a DC source. Assume that at
t =0, the switch S is closed. While closing the switch, the voltage drop across the capacitor and
current flowing through the inductor is zero.

Applying KVL to the circuit,
V=V, (1)+V, (1) + V(1)
di(t) +l
dt C
By applying laplace transform to equation (13), we get
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The roots of the denominator for equation (14)
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Equation (15) can be represented by

S,.S,=atp
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Here, §, =a +f, S,=a-p
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Equation (14) can be written as

A
(s=si)(s—s.)
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There are three possibilities.
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The two roots are real and distinct. The denominator has the roots (o +p) and

(oo —B) and we may write
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Taking inverse laplace transform,

I(s) =
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The value of k| and k, can be find by using partial fraction method. The current is said to
be overdamped as in below fig. 4.11.
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Fig. 3.11 Overdamped response
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The root are equal and the oscillation in the circuit are just eliminated. The solution is the
critically damped case.
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Taking inverse laplace transform,

1(S)=

i(t) =k te” +k,e™ =e” [k ,t+k,]

The current response of i(t) for critically damped case is shown below.
i(t)

Fig. 3.12 Critically damped response



Case 3 :
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The roots are complex conjugate and the circuit is under damped as shown below.
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Taking inverse laplace transform,
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Where, k, and k, are complex and are also conjugate of one another.
k, = k;
~. ican be rewritten as, i=e™ [Acospt+ Bsinfit]

This solution shows that the current is oscillatory and at the same time decays in a short

time as o =—R/2L is always negative.

e
-
_____

-
-
3

Fig. 3.13 Oscillatory response
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Note : When the terms [I] and 1c are equal the oscillations are just eliminated and this

condition is called “critical damping”.



