
CCS335-CLOUD COMPUTING 

Rohini College of Engineering and Technology 

Containers vs. Virtual Machines 

Containers and virtual machines (VMs) are both technologies used for virtualization, 

but they differ in their approach and characteristics. Here are the key differences between 

containers and virtual machines: 

1. Architecture: 

● Containers: Containers virtualize at the operating system level, running on a 

single host operating system and sharing the same kernel. 

● Virtual Machines: VMs virtualize at the hardware level, running on a 

hypervisor that emulates the underlying hardware, including the operating 

system. 

2. Resource Isolation: 

● Containers: Containers share the host operating system's kernel and resources, 

providing lightweight isolation through the use of namespaces and control 

groups. 

● Virtual Machines: VMs have their own complete operating system and 

resources, providing stronger isolation and security between VMs. 

3. Performance: 

● Containers: Containers are lightweight and have lower overhead because they 

do not require separate operating systems or hardware emulation. 

● Virtual Machines: VMs have higher overhead due to the need to emulate 

hardware and run a separate operating system for each VM. 

4. Deployment Speed: 

● Containers: Containers can be created and started quickly, typically in 

seconds, as they leverage the host operating system's kernel and do not require 

booting an entire operating system. 

● Virtual Machines: VMs take longer to deploy as they need to boot a complete 

operating system and initialize virtual hardware. 

5. Scalability: 

● Containers: Containers can scale horizontally by quickly starting multiple 

instances on a single host or across multiple hosts due to their lightweight 

nature. 

6. Virtual Machines: VMs can also scale horizontally, but the process is slower and 

requires provisioning additional resources for each VM. 

7. Environment Portability: 

● Containers: Containers are highly portable because they encapsulate an 

application along with its dependencies into a single package, making them 



CCS335-CLOUD COMPUTING 

Rohini College of Engineering and Technology 

platform−agnostic and easily movable across different environments. 

● Virtual Machines: VMs encapsulate the entire operating system, applications, 

and dependencies, making them less portable. They are typically tied to specific 

hypervisor platforms or virtualization technologies. 

8. Flexibility: 

● Containers: Containers provide more flexibility in terms of application 

architecture, allowing micro services−based architectures and modular 

application designs. 

● Virtual Machines: VMs are more suitable for running legacy applications that 

require full operating system virtualization or when there is a need for complete 

isolation between VMs. 

9. Use Cases: 

● Containers: Containers are well−suited for application packaging, micro 

services architectures, and cloud−native development. They are popular in 

DevOps workflows and container orchestration platforms like Kubernetes. 

● Virtual Machines: VMs are commonly used for running legacy applications, 

different operating systems, and workloads requiring strong isolation, such as 

hosting multiple applications with conflicting dependencies. 

In summary, containers offer lightweight and flexible virtualization with fast 

deployment and efficient resource utilization, while virtual machines provide stronger 

isolation, complete operating system virtualization, and support for diverse operating systems. 

The choice between containers and VMs depends on the specific requirements of the 

application or workload, the desired level of isolation, and the need for portability and 

scalability. In many cases, a combination of both technologies is used to leverage their 

respective strengths in different scenarios. 

 


	Containers vs. Virtual Machines
	1. Architecture:
	2. Resource Isolation:
	3. Performance:
	4. Deployment Speed:
	5. Scalability:
	8. Flexibility:
	9. Use Cases:

