CCS335-CLOUD COMPUTING

Containers vs. Virtual Machines

Containers and virtual machines (VMs) are both technologies used for virtualization,
but they differ in their approach and characteristics. Here are the key differences between
containers and virtual machines:

1. Architecture:

e Containers: Containers virtualize at the operating system level, running on a
single host operating system and sharing the same kernel.

e Virtual Machines: VMs virtualize at the hardware level, running on a
hypervisor that emulates the underlying hardware, including the operating
system.

2. Resource Isolation:

e Containers: Containers share the host operating system's kernel and resources,
providing lightweight isolation through the use of namespaces and control
groups.

o Containers: Contaings
do not require separaté

‘_/"

e Virtual Machines: V]

4. Deployment Speed:
e Containers: Containers can be created and started quickly, typically in
seconds, as they leverage the host operating system's kernel and do not require
booting an entire operating system.

e Virtual Machines: VMs take longer to deploy as they need to boot a complete
operating system and initialize virtual hardware.

5. Scalability:

e Containers: Containers can scale horizontally by quickly starting multiple
instances on a single host or across multiple hosts due to their lightweight
nature.

6. Virtual Machines: VMs can also scale horizontally, but the process is slower and
requires provisioning additional resources for each VM.

7. Environment Portability:

e Containers: Containers are highly portable because they encapsulate an
application along with its dependencies into a single package, making them

Rohini College of Engineering and Technology

CCS335-CLOUD COMPUTING

platform—agnostic and easily movable across different environments.

e Virtual Machines: VMs encapsulate the entire operating system, applications,
and dependencies, making them less portable. They are typically tied to specific
hypervisor platforms or virtualization technologies.

8. Flexibility:

e Containers: Containers provide more flexibility in terms of application
architecture, allowing micro services—based architectures and modular
application designs.

e Virtual Machines: VMs are more suitable for running legacy applications that
require full operating system virtualization or when there is a need for complete
isolation between VMs.

9. Use Cases:

e Containers: Containers are well-suited for application packaging, micro
services architectures, and cloud—native development. They are popular in

DevOps workflows and container orchestration platforms like Kubernetes.

. . GINEER . . .
e Virtual Machines: V y‘f— - " | ~ “’c\’»% used for running legacy applications,
A

different operating sy§i#t@mencmwo; J@Rds requiring strong isolation, such as

vint(1% ppend’ pport for diverse operating systems.
The choice between containers a %de on the specific requirements of the
application or workload, the desiggghleve ‘of 150 aHES, and the need for portability and
scalability. In many cases, a combination of both technologies is used to leverage their
respective strengths in different scenarios.

Rohini College of Engineering and Technology

	Containers vs. Virtual Machines
	1. Architecture:
	2. Resource Isolation:
	3. Performance:
	4. Deployment Speed:
	5. Scalability:
	8. Flexibility:
	9. Use Cases:

