1.2 BOOLEAN ARITHMETIC

Binary Addition
Rules of Binary Addition

Note: The rules of binary addition (without carries) are the same as the truths of the XOR gate.

Binary Subtraction

Rules of Binary Subtraction
$0-0=0$

0-1 = 1, and borrow 1 from the next more significant bit
$1-0=1$
$1-1=0$

Example

00100101-00010001= 00010100

$$
\begin{array}{rrrrrrrr}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
+0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

Binary Multiplication

Rules of Binary Multiplication

$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$, and no carry or borrow bits

Example

Note: The rules of binary multiplication are the same as the truths of the AND gate.

Binary Division

Binary division is the repeated process of subtraction, just as in decimal division.

Example 1: $00101010 \div 00000110=00000111$
$00101010 \div 00000110$ $111={ }^{7}$ (base 10)

$$
\begin{aligned}
& =00000111
\end{aligned}
$$

Example 2: $10000111 \div 00000101=000110111.31 .41 .5$

$$
\begin{aligned}
& \begin{aligned}
10000111 & \div 00000101 \\
& =00011011
\end{aligned} \\
& 1 \quad 1 \quad 0 \quad 1 \quad 1=27 \text { (base 10) } \\
& \left.\begin{array}{lllllllllll}
1 & 0 & 1 \\
1
\end{array}\right) \quad \theta \quad \theta \quad 11_{0} \quad 0 \quad 1 \quad 1 \quad 1=135 \text { (base } \\
& \text { - } 1010=5_{\text {(base } 10)} \\
& \begin{array}{r}
1 \\
-\quad 1 \quad 10{ }_{1} \\
-\quad 1
\end{array} \\
& 11 \\
& 0 \\
& \begin{array}{r}
101 \\
-\quad 101
\end{array}
\end{aligned}
$$

