ExpressionforBackE.M.ForInducedE.M.F.perPhaseinsynchronous motor

Case i) Under excitation, $\mathrm{E}_{\mathrm{bph}}<\mathrm{V}_{\mathrm{ph}}$.
$\mathrm{Z}_{\mathrm{s}}=\mathrm{R}_{\mathrm{a}}+\mathrm{j} \mathrm{X}_{\mathrm{s}}=\left|\mathrm{Z}_{\mathrm{s}}\right|\llcorner\theta \Omega \theta=$
$\tan ^{-1}\left(\mathrm{X}_{\mathrm{s}} / \mathrm{R}_{\mathrm{a}}\right)$
$\mathrm{E}_{\mathrm{Rph}} \wedge \mathrm{I}_{\mathrm{aph}}=\theta, \mathrm{I}_{\mathrm{a}}$ lags always by angle $\theta . \mathrm{V}_{\mathrm{ph}}=$
Phase voltage applied
$\mathrm{E}_{\text {Rph }}=$ Back e.m.f. induced per phase
$E_{\text {Rph }}=I_{a} \times Z_{s} V \quad \ldots$ per phase
Let p.f. be $\cos \Phi$, lagging as under excited, $\mathrm{V}_{\mathrm{ph}} \wedge$
$\mathrm{I}_{\text {aph }}=\Phi$
Phasor diagram is shown in the Fig. 1.

Applying cosine rule to $\triangle \mathrm{OAB}$,
$(\mathrm{Ebph})^{2}=(\mathrm{Vph})^{2}+(\mathrm{ERph})^{2}-2 \mathrm{Vph} \operatorname{ERph} \times(\mathrm{Vph} \wedge$
ERph) but $V_{\text {ph }} \wedge \mathrm{E}_{\text {Rph }}=\mathrm{x}=\theta-\Phi$
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \mathrm{x}(\theta-\Phi)$
where $\mathrm{E}_{\mathrm{Rph}}=\mathrm{I}_{\text {aph }} \times \mathrm{Z}_{\mathrm{s}}$ Applying
sine rule to $\triangle \mathrm{OAB}, \mathrm{E}_{\mathrm{bph}} / \sin \mathrm{x}=$
$\mathrm{E}_{\text {Rph }} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\text {Rph }} \sin (\theta-\theta)}{\mathrm{E}_{\text {bph }}}$
So once $\mathrm{E}_{\mathrm{bph}}$ is calculated, load angle δ can be determined by using sine rule.

p.f. is leading in nature.

ERph ${ }^{\wedge} \mathrm{I}_{\text {aph }}=\theta$
$\mathrm{V}_{\mathrm{ph}} \wedge \mathrm{I}_{\mathrm{aph}}=\Phi$
The phasor diagram is shown in the Fig. 2.

Figure 2.10. Phasor diagram for overexcited condition

Applying cosine rule to $\triangle \mathrm{OAB}$,
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \mathrm{x} \cos \left(\mathrm{V}_{\mathrm{ph}} \wedge \mathrm{E}_{\mathrm{Rph}}\right) \mathrm{V}_{\mathrm{ph}} \wedge \mathrm{E}_{\mathrm{Rph}}=$ $\theta+\Phi$
$\therefore \quad\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \quad \mathrm{E}_{\mathrm{Rph}} \cos (\theta+\Phi)$
But $\theta+\Phi$ is generally greater than 90°
$\therefore \quad \cos (\theta+\Phi)$ becomes negative, hence for leading p.f., $\mathrm{E}_{\mathrm{bph}}>\mathrm{V}_{\mathrm{ph}}$.
Applying sine rule to $\triangle \mathrm{OAB}$,
$\mathrm{E}_{\text {bph }} / \sin \left(\mathrm{E}_{\text {Rph }} \wedge \mathrm{V}_{\mathrm{ph}}\right)=\mathrm{E}_{\text {Rph }} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\text {Rph }} \sin (\theta+\phi)}{\mathrm{E}_{\text {bph }}}$
Hence load angle δ can be calculated once $\mathrm{E}_{\mathrm{bph}}$ is known.

Case iii) Critical excitation

In this case $\mathrm{E}_{\mathrm{bph}} \approx \mathrm{V}_{\mathrm{ph}}$, but p.f. of synchronous motor is unity.
$\therefore \quad \cos =1 \quad \therefore \quad \Phi=0^{\circ}$
i.e. V_{ph} and $\mathrm{I}_{\mathrm{aph}}$ are in phase and
$\mathrm{E}_{\text {Rph }}{ }^{\wedge} \mathrm{I}_{\text {aph }}=\theta$
Phasor diagram is shown in the Fig. 3.

Figure 2.11. Phasor diagram for unity p.f. condition

Applying cosine rule to OAB,
$\left(\mathrm{E}_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \cos \theta$
Applying sine rule to OAB ,
$\mathrm{E}_{\mathrm{bph}} / \sin \theta=\mathrm{E}_{\text {Rph }} / \sin \delta$
$\therefore \quad \sin \delta=\frac{\mathrm{E}_{\mathrm{kph}} \sin \theta}{\mathrm{E}_{\mathrm{bph}}}$
where $\quad E_{\text {Rph }}=\mathrm{I}_{\text {aph }} \times \mathrm{Zs}$ V

Thus in general the induced e.m.f. can be obtained by,

$$
\left(E_{\mathrm{bph}}\right)^{2}=\left(\mathrm{V}_{\mathrm{ph}}\right)^{2}+\left(\mathrm{E}_{\mathrm{Rph}}\right)^{2}-2 \mathrm{~V}_{\mathrm{ph}} \mathrm{E}_{\mathrm{Rph}} \cos (\theta \pm \phi)
$$

+ sign for lagging p.f. while - sign for leading p.f.

