
Autoencoder Overview 

An autoencoder is a type of neural network architecture designed for unsupervised learning, 

primarily used for dimensionality reduction, feature learning, and data compression. It learns 

to encode input data into a lower-dimensional representation (called the latent space or code) 

and then decode it back to the original input. The network is trained to minimize the 

reconstruction error — the difference between the original input and the output generated by 

the decoder. 

Autoencoders are composed of two main parts: 

1. Encoder: This part of the network takes the input data and compresses it into a lower-

dimensional latent space representation. The encoder is typically made of one or more 

layers of neurons that gradually reduce the dimensionality of the input data. 

2. Decoder: The decoder takes the compressed representation from the encoder and 

attempts to reconstruct the original input from this representation. The decoder 

typically mirrors the structure of the encoder but in reverse, gradually expanding the 

representation back to the original data's dimensionality. 

Basic Structure of an Autoencoder: 

• Input layer: The original data (e.g., an image or a vector). 

• Encoder: Compresses the input into a latent space representation (usually of lower 

dimensionality). 

• Latent space: A compressed encoding of the input data. 

• Decoder: Reconstructs the input data from the latent space representation. 

• Output layer: The reconstructed data, ideally as close as possible to the original 

input. 

Mathematical Formulation 

Let the input data be x∈Rnx \in \mathbb{R}^nx∈Rn (e.g., an nnn-dimensional vector 

representing an image or some data point). The autoencoder is trained to minimize the 

reconstruction error: 

L(x)=∣∣x−x^∣∣2\mathcal{L}(x) = || x - \hat{x} ||^2L(x)=∣∣x−x^∣∣2 

Where: 

• xxx is the original input. 

• x^\hat{x}x^ is the reconstructed output from the decoder. 

• ∣∣⋅∣∣|| \cdot ||∣∣⋅∣∣ typically represents the L2 norm (Euclidean distance) between the 

input and the reconstructed output. 

The encoder function f(x)f(x)f(x) maps the input xxx to the latent representation, and the 

decoder function g(z)g(z)g(z) reconstructs the data from the latent representation zzz. 

z=f(x)andx^=g(z)z = f(x) \quad \text{and} \quad \hat{x} = g(z)z=f(x)andx^=g(z) 



Training the Autoencoder 

Training an autoencoder is done by minimizing the reconstruction error across a dataset. This 

is typically done using gradient-based optimization methods (like stochastic gradient descent, 

or variants such as Adam) and backpropagation. The goal is to adjust the weights of the 

encoder and decoder networks so that the output is as close as possible to the input data. 

Applications of Autoencoders: 

1. Dimensionality Reduction: Autoencoders can be used for reducing the 

dimensionality of data in an unsupervised manner (similar to PCA), by taking the 

compressed representation from the encoder. 

2. Data Compression: The encoder can learn to represent data in a more compact form, 

which can be used for data compression. 

3. Anomaly Detection: Since autoencoders learn to reconstruct the input data, they can 

identify anomalies by measuring the reconstruction error. If the model cannot 

reconstruct certain data points well (due to being different from the majority of data), 

those points are flagged as anomalies. 

4. Denoising: A denoising autoencoder can be trained to learn a cleaner representation 

of noisy data. In this case, the autoencoder is trained to reconstruct the original (clean) 

input from a noisy version of the data. 

 

Regularized Autoencoder 

A regularized autoencoder refers to an autoencoder that has additional regularization terms 

added to the loss function to encourage certain desired properties in the learned 

representations. Regularization techniques help prevent the model from overfitting the 

training data and improve the generalization of the learned features. 

Why Regularize Autoencoders? 

Autoencoders are prone to overfitting, especially when the network is large and has too many 

parameters relative to the available training data. Regularization helps control the capacity of 

the network, leading to better generalization to unseen data. It can also encourage the 

autoencoder to learn meaningful, sparse, or structured representations that are useful for 

downstream tasks. 

Types of Regularized Autoencoders 

1. Sparse Autoencoder: 

o The sparse autoencoder enforces sparsity in the hidden layer activations. This 

means that, for any given input, only a small fraction of the hidden units 

should be active. To enforce this, a penalty term is added to the loss function 

based on the average activation of the hidden units. 

Loss function with sparsity regularization: 



Lsparse(x)=∣∣x−x^∣∣2+λ∑jρj\mathcal{L}_{\text{sparse}}(x) = || x - \hat{x} ||^2 + \lambda 

\sum_j \rho_jLsparse(x)=∣∣x−x^∣∣2+λj∑ρj 

Where: 

o ρj\rho_jρj is the average activation of hidden unit jjj. 

o λ\lambdaλ is a regularization parameter that controls the sparsity level. 

This regularization encourages the network to learn a compact representation of the data with 

only a few active neurons for each input. 

2. Denoising Autoencoder (DAE): 

o A denoising autoencoder is a variant where the input is deliberately corrupted 

(for example, by adding noise or removing some pixels in an image) and the 

autoencoder is trained to reconstruct the original, clean input. 

o The denoising process forces the autoencoder to learn more robust and general 

features of the data, making it less likely to memorize noise and more likely to 

extract meaningful patterns. 

Loss function for denoising: 

Ldenoising=∣∣x−x^∣∣2\mathcal{L}_{\text{denoising}} = || x - \hat{x} ||^2Ldenoising

=∣∣x−x^∣∣2 

Where xxx is the original input, and x^\hat{x}x^ is the reconstruction from the corrupted 

input. 

3. Contractive Autoencoder: 

o The contractive autoencoder adds a penalty to the loss function that 

encourages the learned representation to be smooth and robust to small 

changes in the input data. 

o This is achieved by adding a Jacobian regularization term, which measures 

how much the activations of the hidden units change with respect to small 

changes in the input. 

Loss function with contractive regularization: 

Lcontractive=∣∣x−x^∣∣2+β∑i,j(∂hi∂xj)2\mathcal{L}_{\text{contractive}} = || x - \hat{x} ||^2 

+ \beta \sum_{i,j} \left( \frac{\partial h_i}{\partial x_j} \right)^2Lcontractive

=∣∣x−x^∣∣2+βi,j∑(∂xj∂hi)2 

Where ∂hi∂xj\frac{\partial h_i}{\partial x_j}∂xj∂hi is the partial derivative of the iii-th 

hidden unit with respect to the jjj-th input feature, and β\betaβ is the regularization 

coefficient. 

This regularization helps prevent the model from overfitting to small fluctuations in the data 

by ensuring that small changes in the input do not lead to large changes in the hidden 

representation. 

4. Variational Autoencoder (VAE): 



o A Variational Autoencoder (VAE) introduces a probabilistic approach to 

autoencoding. In a VAE, the encoder outputs parameters of a distribution 

(typically a Gaussian distribution), and the latent representation is sampled 

from this distribution. 

o The decoder then reconstructs the input from this latent representation, but 

unlike regular autoencoders, a VAE also introduces a KL-divergence term in 

the loss function to ensure that the learned latent space distribution is close to 

a standard normal distribution. 

Loss function for VAE: 

LVAE=∣∣x−x^∣∣2+β⋅DKL(q(z∣x)∣∣p(z))\mathcal{L}_{VAE} = || x - \hat{x} ||^2 + \beta \cdot 

D_{KL}(q(z|x) || p(z))LVAE=∣∣x−x^∣∣2+β⋅DKL(q(z∣x)∣∣p(z)) 

Where: 

o q(z∣x)q(z|x)q(z∣x) is the learned distribution over the latent space. 

o p(z)p(z)p(z) is the prior distribution (usually standard normal). 

o DKLD_{KL}DKL is the Kullback-Leibler divergence between the learned 

and prior distributions. 

The VAE regularizes the latent space by forcing it to follow a known distribution, which 

makes the representation more useful for generating new data (sampling from the latent 

space). 

 

Conclusion 

• Autoencoders are neural networks designed for unsupervised learning of efficient 

representations of input data by encoding it into a lower-dimensional space and then 

decoding it back. They are useful for dimensionality reduction, denoising, and 

anomaly detection. 

• Regularized autoencoders introduce additional constraints to the autoencoder's 

architecture to improve generalization, enforce sparsity, smoothness, or create more 

structured latent spaces. Regularization techniques such as sparse autoencoders, 

denoising autoencoders, and contractive autoencoders help ensure that the learned 

representations capture meaningful features while avoiding overfitting. 

 

 


