
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

POINTERS:

 A pointer is a variable that points to a memory location in which data is stored.

We can access and change the contents of this memory location via the pointer.

Pointer declaration

 A pointer is a variable that contains the memory location of another variable. The

syntax is as shown below. You start by specifying the type of data stored in the location

identified by the pointer. The asterisk tells the compiler that you are creating a pointer

variable. Finally you give the name of the variable.

 type * variable name

Example:

int *ptr;

float *string;

Address operator

ptr=#

 This places the address where num is stores into the variable ptr. If num is stored

in memory 21260 address then the variable ptr has the value 21260.

/* A program to illustrate pointer declaration*/

main()

{

int *ptr;

int sum;

sum=45;

ptr=∑

printf (“\n Sum is %d\n”, sum);

printf (“\n The sum pointer is %d”, ptr);

}

 The pointer contains the address 21260 the value 45

Pointer expressions & pointer arithmetic

 Like other variables pointer variables can be used in expressions. For example if

p1 and p2 are properly declared and initialized pointers, then the following statements

are valid. y=*p1*p2;

sum=sum+*p1;

z= 5* - *p2/p1;

*p2= *p2 + 10;

 C allows us to add integers to or subtract integers from pointers as well as to

subtract one pointer from the other. We can also use short hand operators with the

pointers p1+=; sum+=*p2; etc.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 We can also compare pointers by using relational operators the expressions

such as p1 >p2, p1==p2 and p1!=p2 are allowed.

/*Program to illustrate the pointer expression and pointer arithmetic*/

#include< stdio.h >

main()

{

int p1,p2;

int a,b,x,y,z;

a=30;b=6;

p1=&a;

p2=&b;

x=*p1+ *p2 –6;

y=6*- *p1/ *p2 +30;

printf(“\nAddress of a +%u”,p1);

printf(“\nAddress of b %u”,p2);

printf(“\na=%d, b=%d”,a,b);

printf(“\nx=%d,y=%d”,x,y);

p1=p1 + 70;

p2= p2;

printf(“\na=%d, b=%d”,a,b);

}

Pointer to arrays

An array is actually very much like pointer. We can declare the arrays first element as

 a[0] or as int *a

 a[0] is an address

 *a is also an address

 The difference is pointer is a variable and can appear on the left of the assignment

operator. The array name is constant and cannot appear as the left side of assignment

operator.

/* A program to display the contents of array using pointer*/

void main()

{

int a[100];

int i,j,n;

printf(“\nEnter the elements of the array\n”);

scanf(“%d”,&n);

printf(“Enter the array elements”);

for(I=0;I< n;I++)

{

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

scanf(“%d”,&a[I]);

printf(“Array element are”);

}

for(ptr=a, ptr< (a+n); ptr++)

printf(“Value of a[%d]=%d stored at address %u”,j+=,*ptr,ptr);

}

 Strings are characters arrays and here last element is 0 arrays and pointers to char

arrays can be used to perform a number of string functions.

Pointers and structures

 We know the name of an array stands for the address. Suppose item is an array

variable of struct type. Consider the following declaration:

struct products

{

char name[30];

int manufac;

float net;

item[2],*ptr;

}

 This statement declares item as array of two elements, each type struct products

and ptr as a pointer data objects of type struct products, the

assignment ptr=item;

would assign the address of zeroth element to product[0]. Its members can be accessed

by using the following notation.

ptr- >name;

ptr- >manufac;

ptr- >net;

 The symbol - > is called arrow pointer and is made up of minus sign and greater

than sign.

When the pointer is incremented by one it is made to print to next record ie item[1]. The

following statement will print the values of members of all the elements of the product

array.

for(ptr=item; ptr< item+2;ptr++)

printf(“%s%d%f\n”,ptr- >name,ptr- >manufac,ptr- >net);

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURES

 We could also use the notation (*ptr).number to access the member number. The

parenthesis around ptr are necessary because the member operator. Has a higher

precedence than the operator *.

