UNIT – II – TWO DIMENSIONAL VARIABLES

Let *S* be the sample space. Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each outcome $s \in S$. Then (X, Y) is a two dimensional random variable.

SINEER,

Let *X*, *Y* be a two dimensional discrete random variable for each possible outcome (X_i, Y_j) . We associate a number $P(X_i, Y_j)$ representing $[X = x_i, Y = y_j]$ and satisfies the following conditions

i)
$$P[x_i, y_j] \ge 0$$

ii)
$$\sum \sum p(x_i, y_j) = 1$$

The function $P[x_i, y_j]$ is called joint probability mass function of x, y

Conditional distribution of X given Y

$$P[X = x_i/Y = y_j] = \frac{P[X = x_i \cap Y = y_j]}{P[Y = y_i]}$$

$$\frac{P[X=x_i Y=y_j]}{P[Y=y_j]}$$
TIMIZE OUTSPREN

INYAKUM

$$P[Y = y_j / X = x_i] = \frac{P[Y = y_j \cap X = x_i]}{P[X = x_i]}$$

$$= \frac{P[X=x_i, Y=y_j]}{P[X=x_i]}$$

Test of independent

$$P[X = x_i, Y = y_j] = P[X = x_i], P[Y = y_j]$$

Problems under on Marginal Distribution

1. The joint probability marginal function of **X**, **Y** is given by P(xy) =

K(2x+3y), x = 0, 1, 2, y = 1, 2, 3 find K. Find all the marginal distribution and conditional probability distribution . Also probability distribution X + Y.

Solution:			3	ECHNO DXO
0	ЗК	6K	9К	18K
1	5K	8K	11K	24K
2	7K 🛨	10K	13K	30K
$\sum y$	15K	24K	NYA33K	72K

We know that
$$\sum P(x, y) = 12$$
 OPTIMIZE OUTSPREP

$$\Rightarrow 72K = 1$$

$$\Rightarrow K = \frac{1}{72}$$

Marginal distribution

Х	0	1	2
P(X)	$\frac{18}{72}$	24 72	$\frac{30}{72}$

ENGINEERIN

Y	St Di	2	3
P(Y)	$\frac{15}{72}$	$\frac{24}{72}$	$\frac{33}{72}$

Conditional distribution at x given y

$$P[X = 0/Y = 1] = \frac{P[X = 0, Y = 1]}{P[Y = 1]} = \frac{\frac{3}{72}}{\frac{15}{72}} =$$

$$P[X = 2/Y = 2] = \frac{P[X = 2, Y = 2]}{P[Y = 2]} = \frac{\frac{6}{72}}{\frac{24}{72}} = \frac{1}{4}$$

$$P[X = 0/Y = 3] = \frac{P[X = 0, Y = 3]}{P[Y = 3]} = \frac{9/_{72}}{33/_{72}} = \frac{3}{11}$$

$$OBSERVE OPTIMIZE OUTSPREA$$

$$P[X = 1/Y = 1] = \frac{P[X = 1, Y = 2]}{P[Y = 1]} = \frac{\frac{5}{72}}{\frac{15}{72}} = \frac{1}{3}$$

$$P[X = 1/Y = 2] = \frac{P[X = 1, Y = 2]}{P[Y = 2]} = \frac{\frac{8}{72}}{\frac{24}{72}} = \frac{1}{3}$$

$$P[X = 1/Y = 3] = \frac{P[X = 1, Y = 3]}{P[Y = 3]} = \frac{\frac{11}{72}}{\frac{33}{72}} = \frac{1}{3}$$

$$P[X = 2/Y = 1] = \frac{P[X = 2, Y = 1]}{P[Y = 1]} = \frac{7/72}{15/72} = \frac{7}{15}$$

$$P[X = 2/Y = 2] = \frac{P[X = 2, Y = 2]}{P[Y = 2]} = \frac{\frac{10}{72}}{\frac{24}{72}} = \frac{5}{12}$$

$$P[X = 2/Y = 3] = \frac{P[X = 2, Y = 3]}{P[Y = 3]} = \frac{\frac{13}{72}}{\frac{33}{72}} = \frac{13}{33}$$

Conditional distribution at y given x

161

$$P[Y = 1/X = 0] = \frac{P[Y = 1, X = 0]}{P[X = 0]} = \frac{3/72}{18/72} = \frac{1}{6}$$

$$P[Y = 1/X = 1] = \frac{P[Y = 1, X = 1]}{P[X = 1]} = \frac{5/72}{24/72} = \frac{5}{24}$$

$$P[Y = 1/X = 2] = \frac{P[Y = 1, X = 2]}{P[X = 2]} = \frac{7/72}{30/72} = \frac{7}{30}$$

$$P[Y = 2/X = 0] = \frac{P[Y = 2, X = 0]}{P[X = 0]} = \frac{6/72}{18/72} = \frac{1}{3}$$

$$P[Y = 2/X = 1] = \frac{P[Y = 2, X = 1]}{P[X = 1]} = \frac{8/72}{24/72} = \frac{1}{2}$$

$$P[Y = 2/X = 1] = \frac{P[Y = 2, X = 1]}{P[X = 1]} = \frac{7/72}{24/72} = \frac{1}{3}$$

$$OBSERVE OPTIMIZE OUTSPREND$$

$$P[Y = 2/X = 2] = \frac{P[Y = 2, X = 2]}{P[X = 2]} = \frac{\frac{10}{72}}{\frac{30}{24}} = \frac{1}{3}$$

$$P[Y = 2/X = 2] = \frac{P[Y = 2, X = 2]}{P[X = 2]} = \frac{\frac{10}{72}}{\frac{30}{72}} = \frac{1}{3}$$

$$P[Y = 3/X = 0] = \frac{P[Y = 3, X = 0]}{P[X = 0]} = \frac{9/72}{18/72} = \frac{1}{2}$$

$$P[Y = 3/X = 1] = \frac{P[Y = 3, X = 1]}{P[X = 1]} = \frac{\frac{11}{72}}{\frac{24}{72}} = \frac{11}{24}$$

$$P[Y = 3/X = 2] = \frac{P[Y = 3, X = 2]}{P[X = 2]} = \frac{\frac{13}{72}}{\frac{30}{72}} = \frac{13}{30}$$

Distribution function of x + y

1	P ₀₁	³ / ₇₂
	O NET	
2	$P_{02} + P_{11}$	$11/_{72}$
	OF	
3	$P_{03} + P_{12} + P_{21}$	24_{72}
4	$P_{13} + P_{22}$	21/72
5	P ₂₃	13/72

2. The joint distribution of X and Y is given by $f(x, y) = \frac{x+y}{21}$, x = 1, 2, 3; y =

1, 2.

Find the marginal distributions. 4M, KANYAK^M

Solution:

Given $f(x, y) = \frac{x+y}{21}, x = 1,2,3; y = 1,2$

$$\Rightarrow f(1,1) = \frac{2}{21}, f(1,2) = \frac{3}{21}, f(2,1) = \frac{3}{21}, f(2,2) = \frac{4}{21}, f(3,1) = \frac{4}{21}, f(3,2) =$$

5 21

The marginal distributions are given in the table.

		Х			$P_Y(y) = P(Y = y)$
		1	2	3	
Y	1	$ \frac{2}{21} P(1,1) $	$\frac{3}{21}$ P(1,2)	$ \frac{4}{21} P(1,3) $	$\frac{9}{21}$
	2	$\begin{array}{c} -31.61\\ \overline{21}\\ P(2,1)\end{array}$	$\frac{4}{21}$ P(2,2)	$ \frac{5}{21} P(2,3) $	$\frac{12}{21}$
$P_X(x) =$	P(X=x)	$\frac{5}{21}$	$\frac{7}{21}$	$\frac{9}{21}$	1

The marginal distribution of X

$$P_X(1) = P(X = 1) = \frac{5}{21}, P_X(2) = P(X = 2) = \frac{7}{21}, P_X(3) = P(X = 3) = \frac{9}{21}$$

The marginal distribution of Y

$$P_Y(1) = P(Y = 1) = \frac{9}{21}, \quad P_Y(2) = P(Y = 2) = \frac{12}{21}$$

Problems under on Conditional Distribution

1. The two dimensional random variable (X, Y) has the joint probability mass function $f(x, y) = \frac{x+2y}{27}$, x = 0, 1, 2; y = 0, 1, 2. Find the conditional distribution of Y for X= x. Also find the conditional distribution of Y / X = 1

Solution:

We know that the conditional probability distribution of Y for X = x is

$$f\left(\frac{y}{x}\right) = \frac{f(x,y)}{f(x)}$$
 where $f(x,y)$ is the joint probability function of X and y.

To find f(x, y) Marginal Distributions

Given $f(x, y) = \frac{x+2y}{27}, x = 0,1,2; y = 0,1,2$.

		14/-			
		14 /K .	x		$ \begin{array}{l} P_Y(y) \\ = P(Y=y) \end{array} $
		ð/º		2	2
	0	O 0		$\frac{2}{27}$	$\frac{3}{37}$
		P(0,0)	-P(1,0)	P(2,0)	P(Y=0)
.	1	$\frac{2}{27}$	$\frac{3}{27}$	$\frac{4}{27}$	$\frac{9}{27}$
Y		0- 4		\sim	P(Y=1)
		P(0,1)	P(1,1)	P(2,1)	/
	2	$\frac{4}{2}$	5	6	15
		27	27	27	27
		P(0,2)	A A A A A A A A A A A A A A A A A A A		P(Y=2)
		1 (0,2)	P(1,2)	P(2,2)	
		6	9	12	
$P_X(x)$)	275ERV5	27 of	TSPR27	1
= P(A)	X = x)	P(X=0)	P(X=1)	P(X=2)	
				(n) $f($	2 22)

The Conditional Probability of Y for X= x is given by $f\left(\frac{y}{x}\right) = \frac{f(x,y)}{f(x)}$

By using the above table we get the conditional probability of Y for X = x as follows

When x = 0,

$$P[Y = 0/X = 0] = \frac{P[X = 0, Y = 0]}{P[X = 0]} = \frac{0}{\frac{6}{27}} = 0$$

$$P[Y = 1/X = 0] = \frac{P[X = 0, Y = 1]}{P[X = 0]} = \frac{\frac{2}{27}}{\frac{6}{27}} = \frac{1}{3}$$

$$P[Y = 2/X = 0] = \frac{P[X = 0, Y = 2]}{P[X = 0]} = \frac{4/27}{6/27} = \frac{2}{3}$$

When x = 1,

$$P[Y = 0/X = 1] = \frac{P[X = 1, Y = 0]}{P[X = 1]} = \frac{\frac{1}{27}}{\frac{9}{27}} = \frac{1}{9}$$

$$P[Y = 1/X = 1] = \frac{P[X = 1, Y = 1]}{P[X = 1]} = \frac{\frac{3}{27}}{\frac{9}{27}} = \frac{1}{3}$$
$$P[Y = 2/X = 1] = \frac{P[X = 1, Y = 2]}{P[X = 1]} = \frac{\frac{5}{27}}{\frac{9}{27}} = \frac{5}{9}$$

When x = 2,

$$P[Y = 0/X = 2] = \frac{P[X = 2, Y = 0]}{P[X = 2]} = \frac{\frac{2}{27}}{\frac{12}{27}} = \frac{1}{6}$$

$$P[Y = 1/X = 2] = \frac{P[X = 2, Y = 1]}{P[X = 2]} = \frac{4/27}{12/27} = \frac{1}{3}$$
 OUTSPREP

$$P[Y = 2/X = 2] = \frac{P[X = 2, Y = 2]}{P[X = 2]} = \frac{\frac{6}{27}}{\frac{12}{27}} = \frac{1}{2}$$

Table of $f(y/x)$				
XY	0	1	2	
0	0	$\frac{1}{3}$	$\frac{2}{3}$	
1	OF E91GIN	EEL3NG	5 9	
2 5	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	
			1 69 1	

The conditional distribution of Y given X = 1 is given in the table

2. The joint probability mass function of X and Y is

X Y	0	1	2
0	0.10	0.04	0.02
1	0.08	JE <u>0.20</u>	0.06
2	0.06	0.14	0.30

Find the M.D.F of X and Y. Also $P(X \le 1, Y \le 1)$ and check if X and Y are

independent.

Solution:

The marginal distributions are given in the table below

XY				P(X = x)
0	0.10	0.04	MLARI 0.02	0.16
1	0.08 OBSERVE	0.20	0.06 SPREAD	0.34
2	0.06		0.30	0.50
P(Y = y)	0.24	0.38	0.38	1

Now, $P(X \le 1, Y \le 1) = p(0,0) + p(1,0) + p(0,1) + p(1,1)$

$$= 0.1 + 0.08 + 0.04 + 0.2 = 0.42$$

To test X and Y are independent

P(X = 0) P (Y = 0) = 0.16 X 0.24 \neq 0.1

$$\therefore P(X = 0)P(Y = 0) \neq P(X = 0, Y = 0) \in ER$$

$$\therefore X \text{ and } Y \text{ are independent.}$$

OBSERVE OPTIMIZE OUTSPREAD