
​UNIT III CONTINUOUS INTEGRATION USING JENKINS​ ​6​
​Install​ ​&​ ​Configure​ ​Jenkins,​ ​Jenkins​ ​Architecture​ ​Overview,​ ​Creating​ ​a​ ​Jenkins​ ​Job,​
​Configuring​ ​a​ ​Jenkins​ ​job,​ ​Introduction​ ​to​ ​Plugins,​ ​Adding​ ​Plugins​ ​to​ ​Jenkins,​
​Commonly​ ​used​ ​plugins​​(Git​​Plugin,​​Parameter​​Plugin,​​HTML​​Publisher,​​Copy​​Artifact​
​and​​Extended​​choice​​parameters).​​Configuring​​Jenkins​​to​​work​​with​​java,​​Git​​and​​Maven,​
​Creating a Jenkins Build and Jenkins workspace.​

​INTRODUCTION​
​Jenkins​ ​is​ ​an​ ​open​ ​source​ ​automation​ ​tool​ ​which​ ​allows​ ​continuous​ ​integration​

​(CI).​ ​It​ ​is​ ​written​ ​in​ ​Java.​ ​Jenkins​ ​builds​ ​and​ ​tests​ ​our​ ​software​ ​projects​ ​continuously​
​which​​makes​​it​​easy​​for​​developers​​to​​integrate​​the​​changes​​in​​the​​project​​and​​reduces​​the​
​cost​ ​of​ ​manual​ ​testing​​and​​increases​​quality.​​Jenkins​​integrates​​all​​types​​of​​development​
​life​ ​cycle​ ​processes​ ​including​ ​build,​ ​document,​ ​test,​ ​package,​ ​phase,​ ​deploy​ ​and​ ​so​ ​on.​
​Jenkins​ ​supports​ ​a​ ​large​ ​number​ ​of​ ​plugins​ ​which​ ​makes​ ​it​ ​easy​ ​to​ ​configure​ ​and​
​customize any project.​
​Features of Jenkins:​
​Following are the features of Jenkins:​
​Open-Source and Free:​
​Jenkins​ ​is​ ​freely​ ​available​ ​and​ ​supported​ ​by​ ​a​ ​large,​ ​active​ ​community,​ ​ensuring​
​continuous development and extensive resources.​
​Easy Installation and Configuration:​
​It​ ​is​ ​a​ ​self-contained​ ​Java-based​ ​program​ ​with​ ​straightforward​ ​installation​ ​processes​
​across​ ​various​ ​operating​ ​systems​ ​like​ ​Windows,​ ​Linux,​ ​and​ ​macOS.​ ​Configuration​ ​is​
​managed through a user-friendly web interface.​
​Extensive Plugin Ecosystem:​
​Jenkins​ ​boasts​ ​a​ ​vast​ ​library​ ​of​ ​plugins​ ​(over​ ​1,500)​ ​that​ ​extend​ ​its​ ​functionality​ ​and​
​enable​ ​integration​ ​with​ ​a​ ​wide​ ​array​ ​of​ ​tools​ ​and​ ​technologies​ ​in​ ​the​ ​software​
​development​​lifecycle,​​including​​version​​control​​systems​​(Git,​​SVN),​​build​​tools​​(Maven,​
​Gradle), testing frameworks, and deployment platforms (Docker, Kubernetes, AWS).​
​Continuous Integration and Delivery (CI/CD) Capabilities:​
​Jenkins​ ​automates​ ​the​ ​entire​ ​CI/CD​ ​pipeline,​ ​including​ ​building,​ ​testing,​​and​​deploying​
​software projects whenever code changes are committed.​
​Distributed Builds:​
​Jenkins​ ​can​ ​distribute​ ​build​ ​jobs​ ​across​ ​multiple​ ​agent​ ​machines​ ​(nodes),​ ​optimizing​
​resource utilization and accelerating build and test times.​
​Monitoring and Reporting:​
​Jenkins​ ​provides​ ​built-in​ ​capabilities​ ​for​ ​monitoring​ ​build​​status,​​viewing​​logs,​​tracking​

​performance​ ​trends,​ ​and​ ​generating​ ​reports​ ​to​ ​provide​ ​insights​ ​into​ ​the​ ​development​
​process.​
​Notifications:​
​It​​can​​send​​notifications​​about​​build​​and​​deployment​​results​​through​​various​​channels​​like​
​email or chat platforms.​

​ADVANTAGES AND DISADVANTAGES OF USING JENKINS​
​Advantages​
​●​ ​Highly​ ​extensible​ ​with​ ​a​ ​huge​ ​variety​ ​of​ ​existing​ ​plugins.​ ​Plugins​ ​contribute​ ​to​

​Jenkins’​ ​flexibility​ ​and​ ​rich​ ​scripting​ ​and​ ​declarative​ ​language​ ​which​ ​supports​
​advanced, custom pipelines.​

​●​ ​Robust and reliable at almost any scale.​
​●​ ​Mature and battle-tested.​
​●​ ​Supports hybrid and multi-cloud environments.​
​●​ ​Offers an extensive knowledge base, documentation, and community resources.​
​●​ ​Based​​on​​Java,​​an​​enterprise​​development​​language​​with​​a​​broad​​ecosystem,​​making​​it​

​suitable for legacy enterprise environments.​
​Disadvantages:​
​●​ ​Single​​server​​architecture—uses​​a​​single​​server​​architecture,​​which​​limits​​resources​​to​

​resources​ ​on​ ​a​ ​single​ ​computer,​ ​virtual​ ​machine,​ ​or​ ​container.​​Jenkins​​doesn’t​​allow​
​server-to-server​ ​federation,​ ​which​ ​can​ ​cause​ ​performance​ ​issues​ ​in​ ​large-scale​
​environments.​

​●​ ​Jenkins​​sprawl—this​​is​​a​​common​​problem​​which​​also​​stems​​from​​lack​​of​​federation.​
​Multiple​​teams​​using​​Jenkins​​can​​create​​a​​large​​number​​of​​standalone​​Jenkins​​servers​
​that are difficult to manage.​

​●​ ​Relies​​on​​dated​​Java​​architectures​​and​​technologies—specifically​​Servlet​​and​​Maven.​
​In​​general,​​Jenkins​​uses​​a​​monolithic​​architecture​​and​​is​​not​​designed​​for​​newer​​Java​
​technologies such as Spring Boot or GraalVM.​

​●​ ​Not​ ​container​ ​native—Jenkins​ ​was​ ​designed​ ​in​ ​an​ ​era​ ​before​ ​containers​ ​and​
​Kubernetes​ ​gained​​popularity,​​and​​while​​it​​supports​​container​​technology,​​it​​does​​not​
​have nuanced support for container and orchestration mechanisms.​

​●​ ​Difficult​ ​to​ ​implement​ ​in​ ​production​ ​environments—developing​​continuous​​delivery​
​pipelines​​with​​Jenkinsfiles​​requires​​coding​​in​​a​​declarative​​or​​scripting​​language,​​and​
​complex pipelines can be difficult to code, debug, and maintain.​

​●​ ​Offers​ ​no​ ​functionality​ ​for​ ​real​ ​production​ ​deployments—“deploying​ ​with​ ​Jenkins”​
​means running a fully customized set of scripts to handle the deployment.​

​●​ ​Jenkins​ ​itself​ ​requires​ ​deployment—this​ ​can​ ​be​ ​difficult​ ​to​ ​automate.​ ​Organizations​
​that​ ​need​ ​to​ ​combine​ ​Jenkins​ ​with​ ​a​ ​continuous​ ​delivery​ ​solution​ ​have​ ​traditionally​
​used​ ​configuration​ ​management​ ​to​ ​do​​this,​​but​​this​​adds​​another​​layer​​of​​complexity​
​and is error-prone.​

​●​ ​Complicated​ ​plugin​ ​management—Jenkins​ ​has​ ​nearly​ ​2,000​ ​plugins,​ ​which​ ​can​ ​be​
​overwhelming​​to​​sort​​through​​until​​you​​find​​a​​useful​​plugin.​​Many​​plugins​​also​​have​
​dependencies​​that​​increase​​the​​management​​burden,​​while​​some​​plugins​​may​​conflict​
​with​ ​each​ ​other.​ ​There​ ​is​ ​no​ ​guarantee​ ​a​ ​plugin​ ​you​ ​use​ ​will​ ​continue​ ​to​ ​be​
​maintained.​

​●​ ​Groovy​​expertise​​requirements—Jenkins​​has​​programmatic​​pipelines​​implemented​​in​
​Groovy,​​a​​language​​that​​is​​currently​​not​​in​​wide​​use​​and​​can​​make​​scripts​​difficult​​to​
​work with. Jenkins supports scripted and declarative Groovy modes.​

​INSTALL & CONFIGURE JENKINS​
​Since​ ​Jenkins​ ​runs​ ​on​ ​Java,​ ​the​ ​latest​ ​version​ ​of​ ​JDK​ ​or​ ​JRE​ ​must​ ​be​ ​present​ ​in​ ​the​
​system.​
​Steps to be followed to install jenkins:​
​Step​ ​1:​ ​Go​ ​to​ ​the​ ​website​ ​https://www.jenkins.io/download/​ ​and​ ​select​ ​the​ ​platform​ ​on​
​which Jenkins to be installed.​
​Step 2:​​Once the download is completed, run the jenkins.msi​​installation file.​
​Step 3:​​The setup wizard starts as follows. Click​​the Next button to proceed.​

​Step 4:​​Now, select the destination folder for installation​​and click Next button.​

https://www.jenkins.io/download/

​Step 5:​​On the next screen, Select RunService as LocalSystem.​

​Click​ ​the​ ​next​​button.​​Select​​the​​default​​JDK​​folder​​by​​clicking​​on​​Next​​Button.​​Finally​
​click on install to start installation.​
​Step 6:​​Once the installation is complete, Click finish​​to exit the installation wizard.​
​After completing the installation process, we need to unlock Jenkins.​
​Unlocking Jenkins:​
​Step​ ​1:​ ​Open​ ​web​ ​browser​ ​and​ ​navigate​ ​to​ ​the​ ​port​ ​number​ ​by​ ​giving​ ​the​ ​url​
​https:localhost:8080/​
​Step​​2:​​Navigate​​to​​the​​location​​of​​the​​system​​specified​​by​​the​​Unblock​​jenkins​​page.​​The​
​location is :​

​Step​ ​3:​ ​Open​ ​the​ ​initialAdminPassword​ ​in​ ​Notepad​ ​and​ ​copy​ ​it.​ ​Paste​ ​it​ ​to​ ​the​
​Administrator Password on the Unblock Jenkins page and click continue to proceed.​

​Step​ ​4:​ ​Enter​​the​​required​​information​​on​​the​​Create​​First​​Admin​​User​​page.​​Click​​Save​
​and Continue to proceed.​

​Step​​5:​​On​​the​​Instance​​Configuration​​page​​confirm​​the​​port​​number​​8080​​and​​click​​save​
​and finish to finish the initial customization.​

​Jenkins configuration is done.​

​Jenkins dashboard appears as follows.​

​Concept of Continuous Integration:​
​The​​continuous​​integration​​is​​a​​development​​practice​​in​​which​​developers​​commit​

​the​ ​changes​ ​to​ ​the​ ​source​ ​code​ ​in​ ​a​ ​shared​ ​repository.​ ​Every​ ​commit​ ​made​ ​in​ ​the​
​repository​ ​is​ ​then​ ​built.​ ​This​ ​allows​ ​the​ ​development​ ​team​ ​to​ ​detect​ ​any​ ​problem​
​efficiently.​ ​Build​​is​​triggered​​whenever​​a​​commit​​occurs.​​The​​job​​of​​triggering​​the​​build​

​for​ ​every​ ​commit​​can​​be​​automated​​by​​jenkins.​​Hence​​Jenkins​​is​​known​​as​​most​​mature​
​continuous integration tool.​

​JENKINS ARCHITECTURE OVERVIEW:​
​Jenkins Workflow:​

​●​ ​The​​developers​​commit​​the​​code​​to​​a​​source​​code​​repository​​such​​as​​GitHub.​​Jenkins​
​checks​ ​the​ ​repository​ ​at​ ​regular​ ​intervals​ ​for​ ​noticing​ ​the​ ​changes​ ​committed​ ​in​ ​the​
​repository.​

​●​ ​When​ ​Jenkins​ ​server​ ​finds​ ​that​ ​the​ ​changes​ ​are​​committed​​in​​the​​repository,​​it​​starts​
​preparing a new build.​

​●​ ​If the build fails, then the developers are notified about it.​
​●​ ​If the build is successful, then the Jenkins server deploys the build on the test server.​
​●​ ​The​​test​​server​​tests​​the​​build​​and​​generates​​the​​feedback.​​The​​Jenkins​​server​​gets​​this​

​feedback and notifies about build and test results to the developers.​
​●​ ​If everything is perfect then the build is deployed on the production server​
​●​ ​In​​all​​the​​above​​activities,​​Jenkins​​server​​continuously​​verifies​​the​​code​​repository​​for​

​changes made in the source code. If so, the above activities are repeated continuously.​
​Jenkins Architecture:​

​Jenkins​ ​works​ ​on​ ​Master-Slave​ ​Architecture​ ​also​ ​called​ ​Controller-Agent.​ ​It​ ​manages​
​distributed​​builds​​using​​this​​Master-Slave​​architecture.​​The​ ​TCP/IP​ ​protocol​ ​is​ ​used​ ​to​
​communicate​ ​between​ ​Master-Slave​ ​architecture.​ ​Jenkins​ ​architecture​ ​comprises​ ​of​​two​
​components​

​1.​ ​Jenkins Master / Server​
​2.​ ​Jenkins Node / Slave / Build Server​

​1. Jenkins Controller(Formerly Master)​
​The​ ​Jenkins​ ​Controller​ ​serves​ ​as​ ​the​ ​central​ ​system​ ​for​ ​managing​ ​a​ ​Jenkins​

​instance,​ ​often​ ​referred​ ​to​ ​as​ ​its​ ​"heart."​ ​It​ ​oversees​ ​agents​ ​and​ ​their​ ​connections,​
​determining​ ​the​ ​tasks​ ​they​ ​should​ ​perform.​ ​Additionally,​ ​the​ ​Jenkins​ ​Controller​ ​loads​
​plugins​ ​and​ ​ensures​ ​that​ ​jobs​ ​run​ ​in​ ​the​ ​correct​ ​sequence.​ ​The​ ​Jenkins​​Controller​​gives​
​instructions to the agents, which follow the directions to complete their work efficiently.​
​Master is responsible for:​

​●​ ​Scheduling the jobs​
​●​ ​Assigning them to slaves​
​●​ ​Sending builds to slaves for execution​
​●​ ​Monitoring the status of every slave​
​●​ ​Retrieve the build results from the slaves​
​●​ ​Display the results received from the slave to the console.​

​2. Jenkins Agent(Formerly Slave)​
​Jenkins​ ​Agent​ ​is​ ​a​ ​machine​ ​that​ ​performs​ ​tasks​ ​like​ ​running​ ​scripts,​ ​executing​

​tests,​ ​or​ ​building​ ​components,​ ​etc.​ ​These​ ​tasks​ ​are​ ​assigned​ ​by​ ​the​ ​Jenkins​ ​Controller.​
​Each​ ​agent​ ​can​ ​have​ ​its​ ​setup,​ ​like​ ​different​ ​operating​ ​systems,​ ​software,​ ​or​ ​hardware.​
​This​​helps​​Jenkins​​handle​​many​​types​​of​​tasks​​and​​work​​faster​​by​​spreading​​the​​load.​​The​
​jenkins slave can be configured on any server including Windows, Linux and mac.​
​There are two main types of agents:​
​Permanent​ ​Agents:​ ​These​ ​are​ ​always​ ​ready​ ​and​ ​connected​ ​to​ ​Jenkins.​ ​They’re​ ​like​
​dedicated workers who are always on standby.​
​Ephemeral​​Agents:​​These​​are​​temporary.​​Jenkins​​starts​​them​​only​​when​​needed,​​usually​
​in the cloud or using tools like Docker. When the job is done, they’re shut down.​

