### 2.2 SOURCE TRANSFORMATION

We have noticed that series-parallel combination and wye-delta transformation help simplify circuits. Source transformation is another tool for simplifying circuits. Basic to these tools is the concept of equivalence.

We recall that an equivalent circuit is one whose v-i characteristics are identical with the original circuit. We saw that node-voltage (or mesh-current) equations can be obtained by mere inspection of a circuit when the sources are all independent current (or all independent voltage) sources. It is therefore expedient in circuit analysis to be able to substitute a voltage source in series with a resistor for a current source in parallel with a resistor, or vice versa, as shown in Fig. 2.6.1. Either substitution is known as a source transformation.


Fig. 2.6.1 Transformation of independent sources.
[Source: "Fundamentals of Electric Circuits" by charles K. Alexander, page: 128]

## Statement:

A source transformation is the process of replacing a voltage source vs in series with a resistor R by a current source is in parallel with a resistor R , or vice versa.

Source transformation also applies to dependent sources, provided we carefully handle the dependent variable. As shown in Fig. 2.6.1, a dependent voltage source in series with a resistor can be transformed to a dependent current source in parallel with the resistor or vice versa.


Fig. 2.6.1 Transformation of dependent sources.

Problem 1:
Use source transformation to find Vo in the circuit in Fig


Fig. 2.6.2 For problem 1.
[Source: "Fundamentals of Electric Circuits" by charles K. Alexander, page: 129]
We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the $4 \Omega$ and $2 \Omega$ resistors in series and transforming the $12-\mathrm{V}$ voltage source gives us Fig. 4.18(b). We now combine the $3 \Omega$ and $6 \Omega$ resistors in parallel to get $2 \Omega$. We also combine the $2-\mathrm{A}$ and 4 -A current source to get a $2-\mathrm{A}$ source. Thus, by repeatedly applying source transformations, we obtain the circuit in Fig. 4.18(c).

(a)

(b)

(c)

Fig. 2.6.3 For problem 1.
[Source: "Fundamentals of Electric Circuits" by charles K. Alexander, page: 129]

We use current division in Fig2.6.3 (c) to get

$$
i=\frac{2}{2+8}(2)=0.4
$$

and

$$
v_{o}=8 i=8(0.4)=3.2 \mathrm{~V}
$$

Alternatively, since the $8-\Omega$ and $2-\Omega$ resistors in Fig2.6.3(c) are in parallel, they have the same voltage $v_{o}$ across them. Hence,

$$
v_{o}=(8 \| 2)(2 \mathrm{~A})=\frac{8 \times 2}{10}(2)=3.2 \mathrm{~V}
$$

