
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

DESIGN ISSUES FOR OBJECT-ORIENTED LANGUAGES 

The following are the design issues of Object oriented languages  

• Exclusivity of objects 

• Type checking of objects used to invoke dynamically bound methods 

• Single versus multiple inheritance 

• Allocation of objects 

• Deallocation of objects 

• Dynamic binding of messages to methods 

Exclusivity of Objects 

• Primitive type – data type that is built into the language; often has a corresponding type on 

the machine (example: int in C) 

• Exclusivity of objects answers the question: is everything (including primitive types) an 

object?   

Object syntax 

Java 

Car c1;    // c1 isn't an object – it's a handle, reference, pointer to an               //object 

c1 = new Car();   //the new car is an object 

C++ 

Car c1;      //c1 is an object 

Car * c2;   //c2 is a pointer to a Car object 

c2 = new Car();  //the new car is an object 

c1.paint(“red”);   //how to call paint if c1 is an object 

c2->paint(“red”);  //how to call paint if c2 is a pointer 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

                            //-> is used for “dereferencing” -- get the object 

                            //c2 points to 

Object Allocation 

• Stack dynamic – object allocated space on stack at runtime 

• Static – object allocated space by compiler in the data segment 

• Heap dynamic – object allocated space on heap at run time 

Memory Allocation 

• languages that use a stack for execution (which is nearly all languages) allocate basically 

three sections of memory 

1)  stack 

2)  heap 

3)  data/text segment 

Stack 

• frame (activation record) for a function created during execution time when function is 

called and pushed onto stack 

• frame is popped from stack when function is exited 

• frame contains: 

– local variables and parameters 

– return address 

– saved registers, old frame pointer 

Heap 

• heap contains data dynamically allocated via a new, malloc, alloc, etc. 

• dynamic means “runtime” 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

• note that space on the stack is also dynamically allocated (we call this stack dynamic) but 

is not allocated explicitly via a new 

Data/text segment 

• data/text segment contains items that are allocated by the compiler 

• This includes: 

– program text (instructions) 

– string literals (also called c-strings) - “hello” 

– large constants – those that are too large to be encoded in an instruction 

Object deallocation 

• When and how are heap allocated objects deallocated? 

Polymorphism/Dynamic Binding 

• Are all messages to methods dynamically bound? 

– Dynamically bound messages are less efficient than statically bound messages 

Assignments between object references 

• Consider classes called Parent, Child where Child inherits from (extends) Parent 

• There exists an IS-A relationship between Child objects and Parent objects (a Child object 

is a Parent object) 

• The IS-A relationship indicates what assignments between references are valid 

parentRef = childRef   #allowed 

childRef = parentRef   #compiler error 

Java casts of object references 

• a cast of an object reference doesn't change the object; it is only an indication to the 

compiler what the object will be at run time 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

• downcast - cast a reference along the class hierarchy in a direction from the root class 

towards the children or subclasses; (Child) parentRef 

• upcast - cast a reference along the class hierarchy in a direction from the sub classes 

towards the root; (Parent) childRef 

• compile-time casting rule - catch attempted casts in cases that are simply not possible;  

happens when we try to attempt casts on objects that are totally unrelated 

Assume Male, Female both inherit from Gender: 

(Male) femaleRef   #error because femaleRef can 

                               #never reference a Male object 

• run-time casting rules – the cast must actually be correct (according to IS-A) relationship 

or runtime error occurs 

Parent parentRef = new Parent(); 

((Child)parentRef).method(); 

Assignments between object references 

• Consider classes called Parent, Child where Child inherits from (extends) Parent 

• There exists an IS-A relationship between Child objects and Parent objects (a Child object 

is a Parent object) 

• The IS-A relationship indicates what assignments between references are valid 

parentRef = childRef   #allowed 

childRef = parentRef   #compiler error 

C++ casts of objects or object references 

• casts of pointers don't change object or create new object 

• casts of objects will cause new object to be created; needed constructor automatically called 

• compile-time casting rule – when casting pointers, same rules as Java apply 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

• run-time casting rule – no rule, because C++ doesn't do dynamic type checking 

Dynamic binding of method calls to method bodies in Java 

• by default, method calls to method bodies are dynamically bound (meaning JVM 

determines which method to call, not compiler) 

• exception to this is methods that are declared to be static; these aren't called with an object 

thus compiler can determine which method is called 

Dynamic binding of method calls to method bodies in C++ 

• by default, method calls to method bodies are statically bound (determined by the compiler) 

• A dynamic binding requires 

a)  polymorphic variable 

b)  virtual method 

Polymorphism 

• assignment of a different meaning to a method call in different context 

• Requires 

– method overriding – method in parent class has same signature as a method in a 

child class 

– polymorphic variable – can reference a parent class object and a child class object 

dynamic binding – which method is called is determined at runtime 

Polymorphism in Java 

class Parent 

{ 

    void foo() { ... } 

} 

class Child extends Parent 

{ 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

    void foo() { ... } 

} 

.. 

.. 

Parent obj; 

.. 

obj.foo();   //JVM determines which foo is called based upon the type 

                 //of object referenced by obj 

 

Polymorphism in C++ 

class Parent 

{ 

    virtual void foo() {  ...  } 

    void goo() { ... } 

} 

class Child: public Parent 

{ 

   virtual void foo() { ... } 

   void goo() { ... } 

} 

.. 

Parent * obj; 

obj->foo();   //which foo is called depends upon what obj points to 

obj->goo();  //call to goo is statically bound (compiler determines it) 

                   //based on type of obj (Parent *) 

Single or multiple inheritance 

• Supporting multiple inheritance adds complexity 

– Name collision 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

– Diamond inheritance 

Name Collision 

• Child class inherits from two Parent classes where each define the same name 

– example: Parent1 and Parent2 both have a method called display 

– example: Parent1 and Parent2 both have a data member named number 

• Language designer needs to come up with a technique (scope resolution) to resolve the 

ambiguity 

• if method is overrided, which is overridden? 

Diamond Inheritance 

• Both Parent classes are derived from a common Grandparent class 

• Should the child class inherit two copies of the Grandparent's data members? 

Type checking of objects used to invoke dynamically bound methods 

• Type checking – ensuring that operands of an operator are of compatible type (includes 

ensuring whether the appropriate object is used to invoke a specific method) 

• Strongly typed language – a language in which all type errors can be detected either at 

compile time or at run time 

• Static type checking (static typing) – type checking performed at compile type 

• Dynamic type checking (dynamic typing) type checking performed at runtime 

More C++/Java differences 

• C++ has header files 

– These allow classes to be compiled in isolation even if one class references another 

class 

• C++ has a reference type and  a pointer type 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 
 

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES  

 

– Java object handles are always references thus an explicit reference type isn’t 

needed 

More C++/Java Differences Parameter Passing 

• In mode semantics – formal parameter receives data from actual parameter 

• Out mode semantics – formal parameter transmits data to the actual parameter 

• Inout mode semantics – supports both 

• Pass-by-value – value of actual parameter is used to initialize formal parameter; supports 

in mode semantics 

• Pass-by-reference – access path is passed to formal method; supports inout semantics 

 

 


