

## Astrophysical Significance of Stellar Evolution

### 1. Chemical Enrichment:

- Elements heavier than hydrogen and helium (e.g., carbon, oxygen, nitrogen, and iron) are forged in stars and dispersed through supernovae and planetary nebulae.
- This process, called **stellar nucleosynthesis**, is responsible for the chemical diversity of the universe.

### 2. Formation of New Stars and Planets:

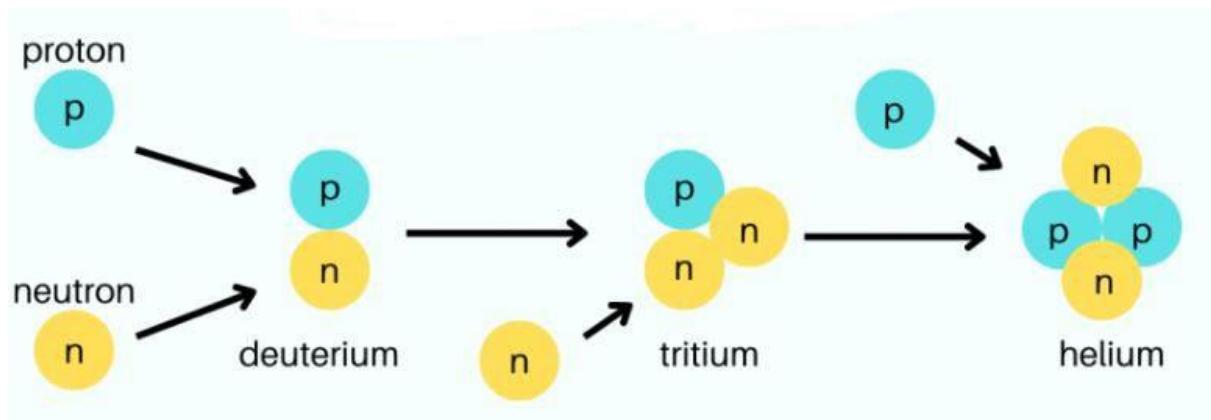
- The material ejected from dying stars contributes to the formation of new stars, planets, and even life.

### 3. Astrophysical Phenomena:

- White dwarfs, neutron stars, and black holes provide insights into exotic states of matter, quantum mechanics, and the nature of space-time.

### 4. Cosmic Recycling:

- The cycle of star formation and death ensures the continuous evolution of galaxies and their stellar populations.


## Comparison of Stellar Evolution Paths

| Parameter               | Low-/Medium-Mass Stars         | High-Mass Stars                             |
|-------------------------|--------------------------------|---------------------------------------------|
| <b>End Product</b>      | White Dwarf                    | Neutron Star or Black Hole                  |
| <b>Fusion Processes</b> | Hydrogen (proton-proton chain) | Hydrogen (CNO cycle) + Heavy Element Fusion |
| <b>Final Explosion</b>  | None                           | Supernova                                   |
| <b>Lifespan</b>         | Long (billions of years)       | Short (millions of years)                   |

## 4.5 Nucleo-synthesis and Formation of Elements

A star's energy comes from the combining of light elements into heavier elements in a process known as **fusion**, or "nuclear burning". It is generally believed that most of the elements in the universe heavier than helium are created, or synthesized, in stars when lighter nuclei fuse to make heavier nuclei. The process is called **nucleosynthesis**.

Nucleosynthesis requires a high-speed collision, which can only be achieved with very high temperature. The minimum temperature required for the fusion of hydrogen is 5 million degrees. Elements with more protons in their nuclei require still higher temperatures. For instance, fusing carbon requires a temperature of about one billion degrees! Most of the heavy elements, from oxygen up through iron, are thought to be produced in stars that contain at least ten times as much matter as the Sun.



**Fig: Nucleo-Synthesis & Formation of Elements**

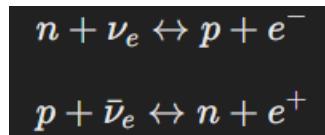
**Nucleosynthesis** refers to the process by which elements are formed in the universe. It involves nuclear reactions occurring within stars, supernovae, and during the early moments of the Big Bang. Understanding nucleosynthesis is crucial for explaining the abundance of chemical elements in the universe and their distribution.

There are distinct types of nucleosynthesis, classified based on where and when they occur:

1. **Big Bang Nucleosynthesis (BBN)** – Formation of light elements in the early universe.
2. **Stellar Nucleosynthesis** – Formation of heavier elements within stars during their lifetimes.
3. **Supernova Nucleosynthesis** – Formation of heavy elements during explosive events.
4. **Neutron-Capture Nucleosynthesis** – Formation of elements via the slow (s-process) or rapid (r-process) capture of neutrons.

### I. Big Bang Nucleosynthesis (BBN)

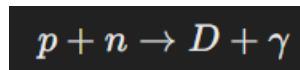
**Timeframe:** Occurred within the first 20 minutes after the Big Bang.


**Process:**

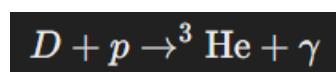
### 1. Initial Conditions:

- The universe was extremely hot and dense, with a temperature exceeding  $10^{10}$  K.
- Energy was in the form of radiation, and matter existed as a plasma of free protons, neutrons, electrons, and photons.

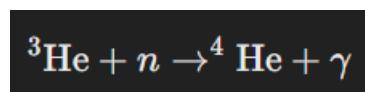
### 2. Neutron-Proton Conversion:


- Neutrons and protons interconverted through weak nuclear interactions:

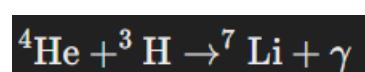



- As the universe expanded and cooled, neutrons became less stable, with a half-life of about 10 minutes. A neutron-to-proton ratio of roughly 1:7 emerged.

### 3. Formation of Light Nuclei:


- At approximately  $10^7$  K, nucleons combined to form light nuclei:
  - **Deuterium (D):**




- **Helium-3 ( $^3\text{He}$ ):**



- **Helium-4 ( $^4\text{He}$ ):**



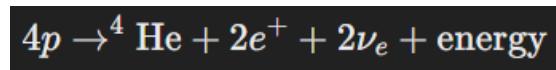
- **Trace Elements (Lithium-7):**



### 4. Outcome:

- The resulting elemental abundance was approximately:

- 75% hydrogen (by mass).
- 25% helium.
- Trace amounts of deuterium (D), lithium (Li), and beryllium ( $^9\text{Be}$ ).


## II. Stellar Nucleosynthesis

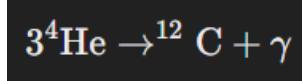
Stellar nucleosynthesis occurs in stars and is responsible for forming elements heavier than hydrogen and helium.

### Processes in Stellar Nucleosynthesis:

#### 1. Hydrogen Burning:

- Hydrogen nuclei (protons) fuse into helium through two dominant pathways:
  - **Proton-Proton Chain (P-P Chain):**
    - Common in low-mass stars like the Sun.
    - Converts four protons into one helium nucleus:



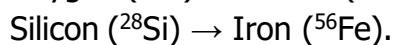
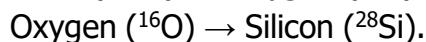
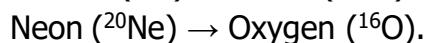
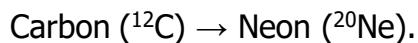

- **CNO Cycle:**

- Dominates in high-mass stars.
- Carbon, nitrogen, and oxygen act as catalysts in fusing hydrogen into helium:



#### 2. Helium Burning:

- When hydrogen is exhausted in the core, stars begin fusing helium into heavier elements:
  - **Triple-Alpha Process:**
    - Converts three helium nuclei ( $^4\text{He}$ ) into carbon ( $^{12}\text{C}$ ):


- In high-mass stars, oxygen is also produced:



### 3. Carbon, Neon, Oxygen, and Silicon Burning:

- Heavier elements are formed in massive stars through successive fusion stages:



- **End of Fusion:** Iron is the most stable nucleus and cannot release energy through fusion. The fusion process halts at iron.

## III. Supernova Nucleosynthesis

When a massive star undergoes a **supernova explosion**, elements heavier than iron are formed.

### Core-Collapse Supernova:

- The collapse of the iron core produces extreme temperatures ( $10^{10}\text{K}$ ) and densities.
- Free protons and neutrons in the core can capture light nuclei, forming heavy elements via the **r-process** (rapid neutron capture).

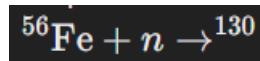
### Nucleosynthesis Products:

- Elements such as gold ( $^{197}\text{Au}$ ), uranium ( $^{238}\text{U}$ ), and thorium ( $^{232}\text{Th}$ ) are synthesized during the explosion and ejected into space.

## IV. Neutron-Capture Nucleosynthesis

Neutron capture involves the addition of neutrons to existing nuclei, forming heavier elements.

### Types of Neutron Capture:


#### 1. Slow Neutron-Capture Process (s-process):

- Occurs in asymptotic giant branch (AGB) stars.
- Nuclei capture neutrons slowly compared to beta decay, allowing for the formation of stable isotopes.
- Example:



## 2. Rapid Neutron-Capture Process (r-process):

- Occurs in extreme environments such as supernovae and neutron star mergers.
- Nuclei capture neutrons faster than they can decay, producing very heavy, neutron-rich isotopes that eventually decay into stable elements.
- Example:



$S_n \rightarrow$ Stable Isotopes of Tin

## Cosmic Chemical Enrichment

### 1. First Stars and Their Contributions:

- The first stars (Population III stars) were massive and short-lived, enriching the universe with the first heavy elements through supernovae.

### 2. Galactic Recycling:

- Elements synthesized in stars are ejected into the interstellar medium via stellar winds, planetary nebulae, and supernovae.
- These enriched materials contribute to the formation of subsequent stars, planets, and ultimately life.

## Summary of Element Formation

| Process                   | Key Elements Formed                              | Conditions                                    |
|---------------------------|--------------------------------------------------|-----------------------------------------------|
| Big Bang Nucleosynthesis  | Hydrogen, Helium, Lithium, Beryllium             | Early universe; $T > 10^7$ K                  |
| Stellar Nucleosynthesis   | Helium, Carbon, Oxygen, Silicon, Iron            | Stars; core fusion processes                  |
| Supernova Nucleosynthesis | Elements heavier than Iron (e.g., Gold, Uranium) | Explosive environments; $T > 10^{10}$ K       |
| Neutron-Capture Processes | Heavy elements (e.g., Tin, Barium, Platinum)     | s-process (AGB stars), r-process (supernovae) |

## **4.6 Classification of Stars**

Stars are classified based on various physical properties such as their temperature, luminosity, size, mass, and spectral characteristics.

### **1. Overview of Star Classification**

Stars are classified into groups based on the following parameters:

1. **Temperature:** Determines the color of the star.
2. **Spectral Type:** Indicates the star's absorption lines in its spectrum.
3. **Luminosity:** The total energy radiated by the star per second.
4. **Size (Radius):** Stars vary from small dwarf stars to massive supergiants.
5. **Mass:** Determines the star's lifetime and evolution.
6. **Chemical Composition:** The relative abundance of hydrogen, helium, and heavier elements.

### **Key Classification Systems:**

1. **Harvard Classification System** (based on spectral type and temperature).
2. **Yerkes or Morgan-Keenan (MK) Classification** (based on luminosity class and spectral type).
3. **Hertzsprung-Russell (H-R) Diagram** (a graphical representation of stars based on luminosity and temperature).

Among these, the Harvard Classification System is the most widely used method for organizing stars based on their spectral type and temperature.

### **2. The Harvard Classification System**

The Harvard Classification System categorizes stars according to their **spectral type** (the pattern of absorption lines in the star's spectrum) and **surface temperature**. It was developed at the Harvard College Observatory in the late 19th and early 20th centuries, primarily by **Annie Jump Cannon**.

#### **Spectral Types:**

Stars are grouped into seven primary spectral classes: **O, B, A, F, G, K, M**. These are arranged in order of decreasing temperature, with O-type stars being the hottest and M-type stars being the coolest. The system follows the **OBAFGKM** sequence:

##### **1. O-Type Stars:**