
Classical step-by-step solution of the swing equation 

Numerical Solution of Swing Equation 

There are several sophisticated methods for solving the swing equation. The step-

by-step or point-by-point method is conventional, approximate but well tried and proven 

method. This method determines the changes in the rotor angular position during a short 

interval of time. 

Consider the swing equation: 

 
The solution δ(t) is obtained at discrete intervals of time with interval spread of Δt 

uniform throughout. Accelerating power, PA and change in speed, which are continuous 

function of time and are described as below: 

1. The accelerating power PA computed at the beginning of an interval is assumed to 

remain constant from the middle of the preceding interval to the middle of the interval 

being considered, as illustrated in Fig. 7.26. 

2. The angular rotor velocity ω’, i.e., dδ/dt (over and above synchronous velocity ω0) 

is assumed to remain constant throughout any interval at the value computed for the 

middle of the interval, as illustrated in Fig. 7.26. 

In Fig. 7.26 the numbering on t/Δt axis pertains to the end of intervals. 

 
The equation for accelerating power at the end of the (n – 1)th interval or for nth 

interval can be written as  
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where δn – 1 has been earlier calculated. 

The change in velocity caused due to PA (n – 1) assumed to remain constant over Δt 

from (n – 3/2) to (n – 1/2), 

 
The above process of computation is repeated to obtain PA(n), Δδn + 1 and δn + 1. The 

time solution in discrete form is thus carried out over the desired length of time, usually 

0.05 second. Actual swing curve can be plotted by drawing a smooth curve through discrete 

values, as shown in Fig. 7.26. 

The accuracy of the solution depends upon the time duration of the intervals. As the 

time interval is reduced the computed swing curve approaches the true. Usually Δt = 0.05 

second provides good accuracy in results. The occurrence or removal of a fault or initiation 

of any switching action causes a discontinuity in accelerating power. 

There are three possibilities of occurrence of discontinuity: 

 

(i) The discontinuity occurs at the beginning of the nth interval, 

(ii) The discontinuity occurs at the middle of an interval. 

(iii) The discontinuity occurs at some time other than the beginning or the middle of 

an interval. 
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In the first case, the average of the values of accelerating power PA before and after 

discontinuity should be used. Thus in determining the increment of angle occurring during 

the first interval after the occurrence of fault at t = 0, Eq. (7.57) becomes – 

Δδi = PA°+ /2M (Δt)2 

whereas PA°+ is the accelerating power immediately after the occurrence of the fault. 

Since immediately before the occurrence of the fault the system is in steady state, PA°- = 0 

and δ0 is of known value. 

If the fault is cleared at the beginning of the nth interval, in calculation for this 

interval the value of PA(n – 1) should be taken as   

 
where PA (n-1)- is the accelerating power immediately before clearing and PA (n – 1)+ is 

that immediately after clearing the fault. 

In second case, i.e., when the discontinuity occurs at the middle of an interval, no 

special procedure is required. The increment of the angle during such an interval is 

computed, as usual, from the value of PA at the beginning of the interval, i.e., 

PA = Ps – output during the fault 

Where-as at the beginning of the interval following clearing of the fault, PA is given 

as  

PA = Ps – output after clearance of fault. 

To compute accelerating power PA in the third case, a weighted average value of 

PA before and after the discontinuity may be used. It is found in practice that such a precise 

computation of accelerating power PA is not required as the time interval used in 

computation is so short that it is sufficiently accurate to consider the discontinuity to occur 

at the beginning or at the middle of an interval and accelerating power PA is computed as 

outlined above in the first two cases. 

 

Digital Solution of Swing Equation: 

There are number of numerical techniques that can be used for the solution of swing 

equation. These techniques can be used for digital computations. In such techniques a nth 

order differential equation is written as n first order equations. These techniques include–

 (1) Euler’s method (2) Modified Euler’s method and (3) Runge-Kutta method. The last two 

methods are most popular methods used for solution of swing equation. 

1. Euler’s Method: 

This is a single step method. In case of a single step method for determining solution 

of xi + 1, we consider dependence at only one earlier point say xi. 

In this case algorithm will be of the following form: 
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In the case of initial value problem, we know dependence at the earlier point from 

initial condition, and therefore, no difficulty arises in determination of solution at xi for the 

first order differential equation. There is another advantage of single step method and it is 

that the step size can be changed at any stage. 

 
Geometrical integration of the algorithm (7.61) is clear from Fig. 7.32. 

 
Here the part of the curve in the interval h is being approximated by segment of the 

straight line whose slope is the same as that at the beginning of the subinterval. This 

method is only of theoretical importance. 

 

2. RungeKutta Method: 

This is the most powerful method of solving swing equation on digital computer. Let 

us consider two first order differential equations in two variables x and y such that – 

 
Let us start with known initial conditions x° and y° and a time step Δt. 
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We compute the following eight constants –  

 
We use the above eight constants to estimate the changes in x and y as follows – 

 
The values of x, y and t are updated as  

 
Then we replace x0 and y0 by x1 and y1 and recalculate h’s, k’s, Δ x and Δ y. In 

general, we may write  

 
 

Application to Solution of Swing Equation: 

 

For using the Runge-Kutta method for solving the swing equation of one machine 

connected to infinite bus, let us substitute – 
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The initial value of load angle δ0 is determined using the pre-fault values. 

 

 
 

where tc is the fault clearing time. 
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