
ENGINE CONTROL UNIT  

We will design a basic engine controller for a simple fuel injected engine. As shown in 

Figure 4.51, the throttle is the command input. The engine measures throttle, RPM, intake air 

volume, and other variables. The engine controller computes injector pulse width and spark. This 

design doesn’t compute all the outputs required by a real engine— we only concentrate on a few 

essentials. We also ignore the different modes of engine operation: warm-up, idle, cruise, etc. 

Multi-mode control is one of the principal advantages of engine control units but we will 

concentrate here on a single mode to illustrate basic concepts in multi-rate control. 

 

 

FIGURE 4.51 ENGINE BLOCK DIAGRAM 

Our requirements chart for the ECU is shown in Figure 4.52. 

 

 

FIGURE 4.52 REQUIREMENTS FOR THE ENGINE CONTROLLER 

SPECIFICATION 

The engine controller must deal with processes that happen at different rates. Figure 

4.53 shows the update periods for the different signals. 



 

FIGURE 4.53 PERIODS FOR DATA IN THE ENGINE CONTROLLER 

We will use ΔNE and ΔT to represent the change in RPM and throttle position, respectively. Our 

controller computes two output signals, injector pulse width PW and spark advance angle S 

[Toy]. It first computes initial values for these variables: 

 

 

 

The controller then applies corrections to these initial values: 

 As the intake air temperature (THA) increases during engine warm-up, the 

controller reduces the injection duration. 

 As the throttle opens, the controller temporarily increases the injection frequency. 

 The controller adjusts duration up or down based upon readings from the exhaust 
oxygen sensor (OX). 

 The injection duration is increased as the battery voltage (+B) drops. 

SYSTEM ARCHITECTURE 

Figure 4.54 shows the class diagram for the engine controller. The two major processes, pulse-

width and advance-angle, compute the control parameters for the spark plugs and injectors. 

https://learning.oreilly.com/library/view/computers-as-components/9780123884367/xhtml/BIB001.html#REF172


 

 

FIGURE 4.54 CLASS DIAGRAM FOR THE ENGINE CONTROLLER 

The control parameters rely on changes in some of the input signals. We will use the physical 

sensor classes to compute these values. Each change must be updated at the variable’s sampling 

rate. The update process is simplified by performing it in a task that runs at the required update 

rate. Figure 4.55 shows the state diagram for throttle sensing, which saves both the current value 

and change in value of the throttle. We can use similar control flow to compute changes to the 

other variables. 
 

 

FIGURE 4.55 STATE DIAGRAM FOR THROTTLE POSITION SENSING 



Figure 4.56 shows the state diagram for injector pulse width and Figure 4.57 shows the state 

diagram for spark advance angle. In each case, the value is computed in two stages, first an initial 

value followed by a correction. 

 

 

FIGURE 4.56 STATE DIAGRAM FOR INJECTOR PULSE WIDTH 

 

FIGURE 4.57 STATE DIAGRAM FOR SPARK ADVANCE ANGLE 

The pulse-width and advance-angle processes do not, however, generate the waveforms to drive 

the spark and injector waveforms. These waveforms must be carefully timed to the engine’s 

current state. Each spark plug and injector must fire at exactly the right time in the engine cycle, 

taking into account the engine’s current speed as well as the control parameters. 

 

Some engine controller platforms provide hardware units that generate high-rate, changing 

waveforms. One example is the MPC5602D. The main processor is a PowerPC processor. The 

enhanced modular IO subsystem (eMIOS) provides 28 input and output channels controlled by 

timers. Each channel can perform a variety of functions. The output pulse width and frequency 

modulation buffered mode (OPWFMB) will automatically generate a waveform whose period 

and duty cycle can be varied by writing registers in the eMIOS. The details of the waveform timing 

are then handled by the output channel hardware. 



ET3491- EMBEDDED SYSTEMS AND IOT DESIGN 

 

 

 

Because these objects must be updated at different rates, their execution will be controlled by an RTOS. 

Depending on the RTOS latency, we can separate the I/O functions into interrupt service handlers and 

threads. 

COMPONENT DESIGN AND TESTING 

The various tasks must be coded to satisfy the requirements of RTOS processes. Variables that are 

maintained across task execution, such as the change-of-state variables, must be allocated and saved in 

appropriate memory locations. The RTOS initialization phase is used to set up the task periods. 

 

Because some of the output variables depend on changes in state, these tasks should be tested with 

multiple input variable sequences to ensure that both the basic and adjustment calculations are 

performed correctly. 

The Society of Automotive Engineers (SAE) has several standards for automotive software: J2632 for 

coding practices for C code, J2516 for software development lifecycle, J2640 for software design 

requirements, J2734 for software verification and validation. 

SYSTEM INTEGRATION AND TESTING 

Engines generate huge amounts of electrical noise that can cripple digital electronics. They also operate 

over very wide temperature ranges: hot during engine operation, potentially very cold before the engine 

is started. Any testing performed on an actual engine must be conducted using an engine controller that 

has been designed to withstand the harsh environment of the engine compartment. 
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