
CCS335-CLOUD COMPUTING 

Rohini college of Engineering and Technology 

Docker Container 

A Docker container is a lightweight and isolated runtime instance created from a 

Docker image. It encapsulates an application along with its dependencies, libraries, and 

configuration settings, providing a consistent and reproducible environment for running the 

application. Here are the key characteristics and concepts related to Docker containers: 

1. Isolation: 

● Containers provide process−level isolation, meaning each container operates as 

a separate entity with its own file system, processes, network interfaces, and 

resources. 

● Containers are isolated from one another and from the host system, ensuring 

that applications running in different containers do not interfere with each other. 

2. Portability: 

● Docker containers are highly portable and can run consistently across different 

environments, such as development, testing, and production. 

● Containers are self−contained units that package the application and its 

dependencies, enabling easy deployment and movement across different hosts 

or cloud environments. 

3. Lightweight: 

● Docker containers are lightweight because they share the host machine's 

kernel and resources. 

● Containers avoid the overhead of booting a complete operating system, as 

in the case of virtual machines (VMs). 

4. Immutable and Reproducible: 

● Containers are built from Docker images, which are immutable and 

read−only templates. 

● The immutability of images ensures that containers can be reproduced and 

deployed consistently, regardless of the host or environment. 

5. Resource Management: 

● Docker provides mechanisms for controlling and managing the resources 

allocated to containers, such as CPU, memory, disk I/O, and network 

bandwidth. 

● Resource limitations and allocation can be specified during container creation 

or dynamically adjusted as needed.



CCS335-CLOUD COMPUTING 

Rohini college of Engineering and Technology 

6. Container Lifecycle: 

● Containers have a lifecycle consisting of creation, starting, running, stopping, 

and removal. 

● Containers can be created from Docker images using the docker run 

command and stopped or removed using appropriate Docker commands. 

7. Networking: 

● Docker containers can be connected to networks to enable communication with 

other containers or external networks. 

● Docker provides various networking options, including bridge networks, 

overlay networks, and host networks, allowing containers to communicate with 

each other and with the host system. 

8. Orchestration: 

● Docker containers can be managed and orchestrated using tools like Docker 

Swarm or Kubernetes. 

● Orchestration platforms allow the deployment, scaling, load balancing, and 

management of containers across multiple hosts or a cluster of machines. 

Docker containers have revolutionized software development and deployment by 

providing a lightweight and portable solution for packaging and running applications. They 

offer flexibility, scalability, and efficiency, making it easier to develop, test, and deploy 

applications in a consistent and reproducible manner. With Docker containers, developers can 

focus on building applications while ensuring that they can run reliably in different 

environments. 

 

Docker Images and Repositories 

In Docker, images and repositories play crucial roles in the containerization process. 

Let's take a closer look at Docker images and repositories: 

Docker Images: 

● A Docker image is a portable and immutable snapshot of a containerized 

application and its dependencies. 

● Images are built from a set of instructions specified in a Docker file, which defines 

the base image, application code, dependencies, and configurations. 

● Images are composed of multiple layers, with each layer representing a specific 

change or addition to the previous layer. 

● Docker images are stored in a layered file system known as the Docker image cache.  

● Images are read−only, meaning they cannot be modified or changed once created. 

If changes are required, a new image needs to be built. 

● Images can be built locally using the Docker command−line interface (CLI) 

by executing the docker build command.



CCS335-CLOUD COMPUTING 

Rohini college of Engineering and Technology 

● Docker images can also be pulled from a registry, such as Docker Hub or a 

private registry, using the docker pull command. 

Docker Repositories: 

● A Docker repository is a collection of related Docker images, usually organized around 

a specific application or project. 

● Docker Hub is the default public registry provided by Docker, hosting a vast collection 

of publicly available images. 

● Docker repositories can be either public or private. Public repositories can be accessed 

and downloaded by anyone, while private repositories require authentication and 

access permissions. 

● Organizations and individuals can set up their private registries to store and distribute 

Docker images within their infrastructure. 

● Docker repositories use a naming convention to identify images, typically in the format 

registry−url/username/repository−name: tag. 

● The tag represents a specific version or variant of an image. If no tag is specified, the 

latest tag is used by default. 

● Images can be pushed to a repository using the docker push command, making them 

accessible to other users or hosts. 

● Docker repositories provide versioning capabilities, allowing multiple versions of an 

image to coexist. 

Key Operations: 

● Building an Image: Use docker build command to build an image locally based on a 

Docker file. 

● Pulling an Image: Use docker pull command to download an image from a 

repository. 

● Pushing an Image: Use docker push command to upload an image to a repository. 

● Tagging an Image: Use docker tag command to assign a specific tag to an image. 

● Searching for Images: Use docker search command to find images available in public 

repositories. 

Docker images and repositories form the foundation of Docker's containerization 

ecosystem. They allow developers to package applications, along with their dependencies, into 

portable and shareable units. Docker Hub and private registries provide a centralized location 

for storing and distributing images, promoting collaboration and reusability within 

development teams and the broader Docker community. 

 
 


	Docker Container
	1. Isolation:
	2. Portability:
	3. Lightweight:
	4. Immutable and Reproducible:
	5. Resource Management:
	6. Container Lifecycle:
	7. Networking:
	8. Orchestration:
	Docker Images and Repositories
	Docker Images:
	Docker Repositories:

