CCS335-CLOUD COMPUTING

Docker Container

A Docker container is a lightweight and isolated runtime instance created from a
Docker image. It encapsulates an application along with its dependencies, libraries, and
configuration settings, providing a consistent and reproducible environment for running the
application. Here are the key characteristics and concepts related to Docker containers:

1. Isolation:

e Containers provide process—level isolation, meaning each container operates as
a separate entity with its own file system, processes, network interfaces, and
resources.

e Containers are isolated from one another and from the host system, ensuring
that applications running in different containers do not interfere with each other.

2. Portability:

e Docker containers are highly portable and can run consistently across different
environments, such as development, testing, and production.

e Containers are self—contained units that package the application and its
dependencies, enabling easy deployment and movement across different hosts

e Containers are built from Docker images, which are immutable and
read—only templates.

e The immutability of images ensures that containers can be reproduced and
deployed consistently, regardless of the host or environment.

5. Resource Management:
e Docker provides mechanisms for controlling and managing the resources
allocated to containers, such as CPU, memory, disk 1/0, and network
bandwidth.

e Resource limitations and allocation can be specified during container creation
or dynamically adjusted as needed.

Rohini college of Engineering and Technology



CCS335-CLOUD COMPUTING

6. Container Lifecycle:

e Containers have a lifecycle consisting of creation, starting, running, stopping,
and removal.

e Containers can be created from Docker images using the docker run
command and stopped or removed using appropriate Docker commands.

7. Networking:

e Docker containers can be connected to networks to enable communication with
other containers or external networks.

e Docker provides various networking options, including bridge networks,
overlay networks, and host networks, allowing containers to communicate with
each other and with the host system.

8. Orchestration:

e Docker containers can be managed and orchestrated using tools like Docker
Swarm or Kubernetes.

e Orchestration platforms allow the deployment, scaling, load balancing, and

Docker containers have reys
providing a lightweight and portab
offer flexibility, scalability, and ¢
applications in a consistent and rep
focus on building applications w
environments.

development and deployment by
ging and running applications. They
ier to develop, test, and deploy
Docker containers, developers can
hey can run reliably in different

(R
Docker Images and Repositories '1' ' ‘4’"

wn

In Docker, images and repositories play crucial roles in the containerization process.
Let's take a closer look at Docker images and repositories:

Docker Images:

e A Docker image is a portable and immutable snapshot of a containerized
application and its dependencies.

e Images are built from a set of instructions specified in a Docker file, which defines
the base image, application code, dependencies, and configurations.

e Images are composed of multiple layers, with each layer representing a specific
change or addition to the previous layer.

e Docker images are stored in a layered file system known as the Docker image cache.

e Images are read—only, meaning they cannot be modified or changed once created.
If changes are required, a new image needs to be built.

e Images can be built locally using the Docker command—line interface (CLI)
by executing the docker build command.

Rohini college of Engineering and Technology



CCS335-CLOUD COMPUTING

Docker images can also be pulled from a registry, such as Docker Hub or a
private registry, using the docker pull command.

Docker Repositories:

Key Operations: ‘-

A Docker repository is a collection of related Docker images, usually organized around
a specific application or project.

Docker Hub is the default public registry provided by Docker, hosting a vast collection
of publicly available images.

Docker repositories can be either public or private. Public repositories can be accessed
and downloaded by anyone, while private repositories require authentication and
access permissions.

Organizations and individuals can set up their private registries to store and distribute
Docker images within their infrastructure.

Docker repositories use a naming convention to identify images, typically in the format
registry—url/username/repository—name: tag.

The tag represents a specific
latest tag is used by default.

Images can be pushed to a &
accessible to other users or &8

Docker repositories provide
image to coexist.

T
Building an Image: Use d%!ker build commandngund an image locally based on a
Docker file.

Pulling an Image: Use docker pull command to download an image from a
repository.

Pushing an Image: Use docker push command to upload an image to a repository.
Tagging an Image: Use docker tag command to assign a specific tag to an image.

Searching for Images: Use docker search command to find images available in public
repositories.

Docker images and repositories form the foundation of Docker's containerization
ecosystem. They allow developers to package applications, along with their dependencies, into
portable and shareable units. Docker Hub and private registries provide a centralized location
for storing and distributing images, promoting collaboration and reusability within
development teams and the broader Docker community.

Rohini college of Engineering and Technology



	Docker Container
	1. Isolation:
	2. Portability:
	3. Lightweight:
	4. Immutable and Reproducible:
	5. Resource Management:
	6. Container Lifecycle:
	7. Networking:
	8. Orchestration:
	Docker Images and Repositories
	Docker Images:
	Docker Repositories:

