AD3351 | DESIGN AND ANI AYSIS OF Al GORITHMS

UNIT-II
BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force — Computing an — String Matching — Closest-Pair and Convex-Hull Problems —
Exhaustive Search — Travelling Salesman Problem — Knapsack Problem — Assignment problem.
Divide and Conquer Methodology — Binary Search — Merge sort — Quick sort — Heap Sort —
Multiplication of Large Integers — Closest-Pair and Convex — Hull Problems.

1. BRUTE FORCE

Brute force is a straightforward approach to solving a problem, usually directly based on the

problem statement and definitions of the concepts involved.

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth- First Search
and Breadth-First Search, Closest-Pair and Convex-Hull Problems can be solved by Brute
Force.

COMPUTING a™

1 Computinga™:a*a*a*...*a(ntimes)

2. Computing n! : The n! can be computed as n*(n-1)* ...*3*2*]

3. Multiplication of two matrices: C=A

4. Searching a key from list of elements (Sequential search)

Advantages:

1. Brute force is applicable to a very wide variety of problems.

2. Itis very useful for solving small size instances of a problem, even though it
is inefficient.

3. The brute-force approach yields reasonable algorithms of at least some
practical value with no limitation on instance size for sorting, searching, and

string matching.

Selection Sort
e First scan the entire given list to find its smallest element and exchange it with the
first element, putting the smallest element in its final position in the sorted list.
e Then scan the list, starting with the second element, to find the smallest among the

last n — 1 elements and exchange it with the second element, putting the second

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AD3351 | DESIGN AND ANI AYSIS OF Al GORITHMS

smallest element in its final position in the sorted list.

Generally, on the I th pass through the list, which we number from 0

to n— 2, the algorithm searfhes for tile smallest item among thelast n—i elements and swaps
it with Ai:A0<A1<..<Ai-1|Ai,...,Amin,...,An-1 in their final positions | the last n — |

elements

After n — 1 passes, the list is sorted

ALGORITHM Selection Sort (A[0.n — 17)
//Sorts a grven arrav by selection sort
{Input: An array A [(_n — 1] of orderable elements
{/Output: Array A [Q,n — 1] sorted 1n non-decreasing order
fori«— 0ron—2do
IR — |
forj—i+1lton—1do
if A []=Almin] min —;
swap A[i] and A[min]
| 89 45 68 90 29 34 17
17 | 4 90 29 34 89
17 29 | 68 90 45 34 89
17 29 34 | 90 45 68 89
17 29 34 45 | 90 68 89
17 29 34 45 68 |90 39

Lh
[
]

17 29 34 45 68 89 190
The sorting of list 89, 45, 68, 90, 29, 34, 17 1s 1llustrated with the selection sort algorithm.

Theanalysisofselectionsortisstraightforward Theinputsizeisgivenbythenumberof elements n;
the basic operation is the key comparison[j]<[NJn]. The number of times it sexecuted depends only
on the array size| and is given by the following sum:

n-2 n-1 n-2 n-2
(M= > 1= [(-)=(i+1)+1=3 (n-1-i)= (L-z@
i=0 j=i+1 =0 i=0

Thus, selection sort 1s a ©@(n?) algorithm on all inputs.
Note: The number of key swaps 1s only @(n), or, more precisely n— 1.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

AD3351 | DESIGN AND ANI AYSIS OF Al GORITHMS

Bubble Sort

The bubble sorting algorithm 1s to compare adjacent elements of the list and exchange them
if they are out of order. By doing it repeatedly. we end up “bubbling up™ the largest element to the
last position on the list. The next pass bubbles up the second largest element, and so on, until after
n—Ipasses the list 1s sorted. Pass 1(0=1=n—2)of bubble sort can be represented by the

following: Ao, . . ., Ag—) Al o Anicl | Ap 2L S A
ALGORITHM Bubble Sort (A[0.n — 1])

//Sorts a given array by bubble sort

/Input: An array A [(,.n — 1] of orderable elements

//Output: Array A [(_n — 1] sorted in non-decreasing order

fori—0Oton—2do

forj—0ton—2-ido
ifA[f+1]sA[j] swap A[j] and A[f + 1]

The action of the algorithm on the list 89, 43, 68, 90, 29, 34, 17 1s 1llustrated as an example.

89 <> 45 68 90 po 34 17
45 80 <& 68 , 90 _ 29 34 17
as 68 g0 <& 90 & 29 34 17
4s 68 89 29 90 & 34 17
a5 68 29 29 34 90 <& 17
a5 68 89 29 34 17 | 90
46 & €8 & B89 &S 29 34 17 | 90
a5 68 29 g9 < 34 17 | 90
45 68 29 34 89 & 17 | 90
a5 68 29 34 17 | 89 90

efc.

The number of kev comparisons for the bubble-sort version given above 1s the same for all arrays
of size n; it 1s obtained by a sum that 1s almost identical to the sum for selection sort:

n-2 n-2-i n-2 n-2 (n _m
(n)=> > 1=3 [(n-2-i)-0+1=3 (n-1-i)= —
=0 j=i+1 i=0 =0

The number of key swaps, however, depends on the input. In the worst case of decreasing

arrays, it is the same as the number of key comparisons.

worst(n) € © (nz)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

