
CCS335-CLOUD COMPUTING

Rohini College of Engineering and Technology

Introduction to Docker

Docker is an open−source platform that enables the development, deployment, and

management of applications using containerization. It provides an easy and efficient way to

package software applications, along with their dependencies, into portable and self−

contained units called Docker containers. Here's an introduction to Docker and its key

concepts:

1. Containers:

● Docker containers are lightweight, isolated environments that encapsulate an

application and its dependencies.

● Containers are based on container images, which are read−only templates

containing everything needed to run an application, including the code,

runtime, libraries, and system tools.

2. Docker Engine:

● Docker Engine is the runtime that enables the creation and execution of

Docker containers.

● It consists of a server daemon, a REST API for interacting with Docker, and

a command−line interface (CLI) for managing Docker resources.

3. Docker file:

● A Docker file is a text file that contains instructions for building a Docker

image.

● Dockerfiles specify the base image, environment variables, dependencies,

and other configuration settings needed to create a container image.

4. Docker Image:

● A Docker image is a portable and immutable snapshot of a containerized

application and its dependencies.

● Images are built based on Dockerfiles and can be stored in local or

remote repositories, such as Docker Hub or private registries.

5. Docker Registry:

CCS335-CLOUD COMPUTING

Rohini College of Engineering and Technology

● A Docker registry is a centralized repository for storing and sharing

Docker images.

● Docker Hub is the default public registry provided by Docker, but you can

also set up private registries to store and distribute custom images.

6. Docker Container Lifecycle:

● Containers can be created from images, started, stopped, restarted, and

removed.

● Containers are isolated, meaning they have their own filesystem,

networking, and process space, but they share the host machine's kernel.

7. Docker Compose:

● Docker Compose is a tool for defining and running multi−container Docker

applications.

8. It uses a YAML file to specify the services, dependencies, and configurations of the

different containers that make up an application.

9. Orchestration and Scaling:

● Docker can be used in conjunction with orchestration platforms like Kubernetes

or Docker Swarm to manage containerized applications across multiple hosts

and scale them as needed.

Benefits of Docker include:

● Portability: Docker containers can run consistently across different environments,

such as development, testing, and production, without worrying about differences in

underlying infrastructure.

● Efficiency: Containers are lightweight and share the host machine's resources,

enabling efficient utilization and faster deployment compared to traditional virtual

machines.

● Isolation: Containers provide process−level isolation, ensuring that applications run in

isolation without interfering with each other.

● Versioning and Reproducibility: Docker images and Docker files enable versioning

and reproducibility of applications, making it easier to track changes and ensure

consistent deployments.

● Ecosystem and Community: Docker has a large and active community, which means

access to a wide range of pre−built images, tools, and resources.

Docker has gained significant popularity in the software development and deployment

landscape due to its ease of use, portability, and efficiency. It has become a fundamental tool

in modern application development, enabling developers to package, distribute, and run

CCS335-CLOUD COMPUTING

Rohini College of Engineering and Technology

applications consistently across different environments.

Docker Components

Docker is composed of several key components that work together to facilitate the

containerization process and enable efficient management of Docker containers. Here are the

main components of Docker:

1. Docker Engine:

● Docker Engine is the core runtime that powers Docker and manages the

lifecycle of containers.

● It includes three main components: Docker daemon, REST API, and CLI.

● The Docker daemon runs in the background, managing container operations,

interacting with the host operating system, and handling container image and

network management.

● The REST API provides a way to programmatically interact with Docker and

perform actions such as creating and managing containers.

2. The Docker CLI is a command−line interface that allows users to interact with Docker

using simple commands.Docker Images:

● Docker images are read−only templates that contain everything needed to run

a containerized application.

● Images are built from Dockerfiles, which specify the base image, application

code, dependencies, and configuration instructions.

● Docker images are stored in a registry and can be pulled from the registry

to create containers.

3. Docker Containers:

● Docker containers are lightweight, isolated, and executable instances

created from Docker images.

● Containers are where applications run and are isolated from one another

and the host system.

● Each container has its own file system, processes, networking, and resources.

● Containers can be started, stopped, restarted, and removed using Docker

commands.

CCS335-CLOUD COMPUTING

Rohini College of Engineering and Technology

4. Docker Registry:

● Docker Registry is a repository for storing and sharing Docker images.

● Docker Hub is the default public registry provided by Docker, containing a

vast collection of pre−built images that can be used as a base for custom

images.

● Private registries can also be set up to store and distribute custom

images within an organization's infrastructure.

5. Docker Compose:

● Docker Compose is a tool for defining and running multi−container Docker

applications.

● It uses a YAML file to specify the configuration, dependencies, and

services required to run a multi−container application.

● Docker Compose allows the management of complex applications as a

single unit, enabling easy deployment and orchestration.

6. Docker Swarm:

● Docker Swarm is Docker's native clustering and orchestration solution for

managing a cluster of Docker nodes.

● It allows the creation of a swarm, which is a group of Docker nodes that act

as a single virtual Docker host.

 Docker Swarm provides features like container orchestration, scaling, load

balancing, and service discovery.

 These components work together to provide a comprehensive containerization

platform, enabling developers and operations teams to build, deploy, and manage

applications using Docker containers. With Docker, applications become portable,

efficient, and isolated, making it easier to develop, test, deploy, and scale applications

in a consistent manner across different environments.

	Introduction to Docker
	1. Containers:
	2. Docker Engine:
	3. Docker file:
	4. Docker Image:
	5. Docker Registry:
	6. Docker Container Lifecycle:
	7. Docker Compose:
	Benefits of Docker include:
	Docker Components
	1. Docker Engine:
	3. Docker Containers:
	4. Docker Registry:
	5. Docker Compose:
	6. Docker Swarm:

