CCS335-CLOUD COMPUTING

Introduction to Docker

docker

Docker is an open—source platform that enables the development, deployment, and
management of applications using containerization. It provides an easy and efficient way to
package software applications, along with their dependencies, into portable and self—
contained units called Docker containers. Here's an introduction to Docker and its key

concepts:

1. Containers:

2. Docker Engine:

Docker containers are lightweight, isolated environments that encapsulate an

Containers are based Afi<gontamen)gdees, which are read—only templates
Ean application, including the code,

Docker Engine is the r, h the creation and execution of
g M—»—M"

- -
Docker containers. <y~

It consists of a server daemon, a REST API for interacting with Docker, and
a command—line interface (CLI) for managing Docker resources.

3. Docker file:

A Docker file is a text file that contains instructions for building a Docker
image.

Dockerfiles specify the base image, environment variables, dependencies,
and other configuration settings needed to create a container image.

4. Docker Image:

A Docker image is a portable and immutable snapshot of a containerized
application and its dependencies.

Images are built based on Dockerfiles and can be stored in local or
remote repositories, such as Docker Hub or private registries.

5. Docker Registry:

Rohini College of Engineering and Technology



CCS335-CLOUD COMPUTING

e A Docker registry is a centralized repository for storing and sharing
Docker images.

e Docker Hub is the default public registry provided by Docker, but you can
also set up private registries to store and distribute custom images.

Docker Container Lifecycle:

e Containers can be created from images, started, stopped, restarted, and
removed.

e Containers are isolated, meaning they have their own filesystem,
networking, and process space, but they share the host machine's kernel.

Docker Compose:

e Docker Compose is a tool for defining and running multi—container Docker
applications.

It uses a YAML file to specify the services, dependenues and configurations of the

Orchestration and Scaling:

e Docker can be used in
or Docker Swarm to

pchestration platforms like Kubernetes
6d applications across multiple hosts

Benefits of Docker include: ‘ OBsgpy, ’ |
ERVE QUTSPR
"' i

Portability: Docker contaiffers can run consm!'ntly across different environments,
such as development, testing, and production, without worrying about differences in
underlying infrastructure.

Efficiency: Containers are lightweight and share the host machine's resources,
enabling efficient utilization and faster deployment compared to traditional virtual
machines.

Isolation: Containers provide process—level isolation, ensuring that applications run in
isolation without interfering with each other.

Versioning and Reproducibility: Docker images and Docker files enable versioning
and reproducibility of applications, making it easier to track changes and ensure
consistent deployments.

Ecosystem and Community: Docker has a large and active community, which means
access to a wide range of pre—built images, tools, and resources.

Docker has gained significant popularity in the software development and deployment
landscape due to its ease of use, portability, and efficiency. It has become a fundamental tool
in modern application development, enabling developers to package, distribute, and run

Rohini College of Engineering and Technology



CCS335-CLOUD COMPUTING

applications consistently across different environments.

Docker Components

Docker is composed of several key components that work together to facilitate the
containerization process and enable efficient management of Docker containers. Here are the
main components of Docker:

1. Docker Engine:

2. The Docker CLI is a command}

Docker Engine is the core runtime that powers Docker and manages the
lifecycle of containers.

It includes three main components: Docker daemon, REST API, and CLI.

The Docker daemon runs in the background, managing container operations

The REST API provigss
perform actions such dg

using simple commands. Dockew o
;

Docker images are re%i!i—only templates s #at contain everything needed to run
a containerized application.

Images are built from Dockerfiles, which specify the base image, application
code, dependencies, and configuration instructions.

Docker images are stored in a registry and can be pulled from the registry
to create containers.

3. Docker Containers:

Docker containers are lightweight, isolated, and executable instances
created from Docker images.

Containers are where applications run and are isolated from one another
and the host system.

Each container has its own file system, processes, networking, and resources.

Containers can be started, stopped, restarted, and removed using Docker
commands.

Rohini College of Engineering and Technology



CCS335-CLOUD COMPUTING

4. Docker Registry:
e Docker Registry is a repository for storing and sharing Docker images.

e Docker Hub is the default public registry provided by Docker, containing a
vast collection of pre—built images that can be used as a base for custom
images.

e Private registries can also be set up to store and distribute custom
images within an organization's infrastructure.

5. Docker Compose:

e Docker Compose is a tool for defining and running multi—container Docker
applications.

e Itusesa YAML file to specify the configuration, dependencies, and
services required to run a multi—container application.

e Docker Compose allows the management of complex applications as a

6. Docker Swarm:

e Docker Swarm is DoGRgr's
managing a cluster of &

e Itallows the creation of‘a-SWek
as a single virtual Do

- . Y= . . .
Docker Swarm provitles features like &ntainer orchestration, scaling, load
balancing, and service discovery.

These components work together to provide a comprehensive containerization
platform, enabling developers and operations teams to build, deploy, and manage
applications using Docker containers. With Docker, applications become portable,
efficient, and isolated, making it easier to develop, test, deploy, and scale applications
in a consistent manner across different environments.

Rohini College of Engineering and Technology



	Introduction to Docker
	1. Containers:
	2. Docker Engine:
	3. Docker file:
	4. Docker Image:
	5. Docker Registry:
	6. Docker Container Lifecycle:
	7. Docker Compose:
	Benefits of Docker include:
	Docker Components
	1. Docker Engine:
	3. Docker Containers:
	4. Docker Registry:
	5. Docker Compose:
	6. Docker Swarm:

