

5.6 TCP FLOW CONTROL

➢ TCP uses a variant of sliding window known as adaptive flow control that:

a. guarantees reliable delivery of data

b. ensures ordered delivery of data

c. enforces flow control at the sender

➢ Receiver advertises its window size to the sender using AdvertisedWindow

field. Sender thus cannot have unacknowledged data greater than

AdvertisedWindow.

Send Buffer

• Sending TCP maintains send buffer which contains 3 segments

(1) acknowledged data (2) unacknowledged data (3) data to be

transmitted.

• Send buffer maintains three pointers

(1) LastByteAcked, (2) LastByteSent, and (3) LastByteWritten such that:

LastByteAcked ≤ LastByteSent ≤ LastByteWritten

• A byte can be sent only after being written and only a sent byte can be

acknowledged.

• Bytes to the left of LastByteAcked are not kept as it had been acknowledged.

Receive Buffer

• Receiving TCP maintains receive buffer to hold data even if it arrives out-of-order.

• Receive buffer maintains three pointers namely (1) LastByteRead, (2)

NextByteExpected, and (3) LastByteRcvd such that:

LastByteRead ≤ NextByteExpected ≤ LastByteRcvd + 1

• A byte cannot be read until that byte and all preceding bytes have been received.

• If data is received in order, then NextByteExpected = LastByteRcvd + 1

• Bytes to the left of LastByteRead are not buffered, since it is read by the application.

5.7 TCP CONGESTION CONTROL

➢ Congestion occurs if load (number of packets sent) is greater than capacity of

the network (number of packets a network can handle).

➢ When load is less than network capacity, throughput increases proportionally.

➢ When load exceeds capacity, queues become full and the routers discard some

packets and throughput declines sharply.

➢ When too many packets are contending for the same link

1. The queue overflows

2. Packets get dropped

3. Network is congested

➢ Network should provide a congestion control mechanism to deal with such a

situation.

➢ TCP maintains a variable called CongestionWindow for each connection.

➢ TCP Congestion Control mechanisms are:

1. Additive Increase / Multiplicative Decrease (AIMD)

2. Slow Start

3. Fast Retransmit and Fast Recovery

Additive Increase / Multiplicative Decrease (AIMD)

➢ TCP source initializes CongestionWindow based on congestion level in the

network.

➢ Source increases CongestionWindow when level of congestion goes down and

decreases the same when level of congestion goes up.

➢ TCP interprets timeouts as a sign of congestion and reduces the rate of

transmission.

➢ On timeout, source reduces its CongestionWindow by half, i.e., multiplicative

decrease. For example, if CongestionWindow = 16 packets, after timeout it is

8.

➢ Value of CongestionWindow is never less than maximum segment size (MSS).

➢ For example, when ACK arrives for 1 packet, 2 packets are sent. When ACK

for both packets arrive, 3 packets are sent and so on.

➢ CongestionWindow increases and decreases throughout lifetime of the

connection.

Slow Start

➢ Slow start is used to increase CongestionWindow exponentially from a

cold start.

➢ Source TCP initializes CongestionWindow to one packet.

➢ TCP doubles the number of packets sent every RTT on successful

transmission.

➢ When ACK arrives for first packet TCP adds 1 packet to

CongestionWindow and sends two packets.

➢ When two ACKs arrive, TCP increments CongestionWindow by 2 packets

and sends four packets and so on.

➢ Instead of sending entire permissible packets at once (bursty traffic),

packets are sent in a phased manner, i.e., slow start.

➢ Slow start is repeated until CongestionWindow reaches

CongestionThreshold and thereafter 1 packet per RTT.

Fast Retransmit And Fast Recovery

➢ TCP timeouts led to long periods of time during which the connection went dead

while waiting for a timer to expire.

➢ Fast retransmit is a heuristic approach that triggers retransmission of a dropped

packet sooner than the regular timeout mechanism. It does not replace regular

timeouts.

➢ When a packet arrives out of order, receiving TCP resends the same

acknowledgment (duplicate ACK) it sent last time.

➢ When three duplicate ACK arrives at the sender, it infers that corresponding

packet may be lost due to congestion and retransmits that packet. This is called

fast retransmit before regular timeout.

➢ When packet loss is detected using fast retransmit, the slow start phase is

replaced by additive increase, multiplicative decrease method. This is known as

fast recovery.

➢ Instead of setting CongestionWindow to one packet, this method uses the ACKs

that are still in pipe to clock the sending of packets.

