
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

LOCATING WEB ELEMENTS AND ACTIONS ON WEB ELEMENTS:-

Selenium defines two methods for identifying web elements:

1. findElement: A command to uniquely identify a web element within the web page.

2. findElements: A command to identify a list of web elements within the web page.

There are 8 locators strategies included in Selenium:

• Identifier.

• Id.

• Name.

• Link.

• DOM.

• XPath.

• CSS.

• UI-element.

A Web element locator is an object that finds and returns Web elements on a page using a given

query. In short, locators find elements.

Why are locators needed?

As human users, we interact with Web pages visually: We look, scroll, click, and type through

a browser.

play a major role while testing an application. The first thing to do is to locate these elements

on the web page. I’ll be covering various options on how to find elements in Selenium that help

in automation testing and data loading activities.

Why do we need to Find Element or FindElements?

Selenium is used for automatic data loading and regression testing of a website. As part of this

automation feature interaction with a web page requires the driver to locate the web element

and either trigger a JavaScript event like-click, enter, select, etc or type in the field value.

Find Element command is used to uniquely identify a (one) web element within the web page.

Whereas, Find Elements command is used to uniquely identify the list of web elements within

the web page.

Difference between “FindElement” and “FindElements”

https://www.edureka.co/blog/what-is-javascript/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

Find Element Find Elements

Returns the first matching web element if

multiple web elements are discovered by the

locator

Returns a list of matching web elements

Throws NoSuchElementException if the

element is not found

Returns an empty list if no matching

element found

This method is used only to detect a unique

web element

This method is used to return a collection

of matching elements.

There are multiple ways to uniquely identify a web element/elements within the web page

such as ID, Name, Class Name, Link Text, Partial Link Text, Tag Name and XPATH.

Locator Strategy/ Types of locators

 Locator Strategy can be one of the following types to find an element or FindElements –

• ID

• Name

• ClassName

• TagName

• Link Text/Partial Link Text

• CSS Selector

• XPATH Selector

Let us now try to see how each of these strategies can be used to find an element or find

elements. First, we’ll see about finding the

Find by ID

ID’s are unique for each element so it is a common way to locate elements using ID Locator.

It is the most common fastest and safest way to detect an element. It is recommended for

website developers to avoid using non-unique Ids or dynamically generated Ids however some

MVC frameworks like – ADF can lead to pages with dynamically generated ids.

If any website has non-unique Ids or has dynamically generated ids then this strategy can’t be

used to uniquely find an element, instead, it will return the first web element which matches

the locator. How we can overcome such situations, will be explained in the XPATH/CSS

selector strategy.

Syntax:

1

2

3

4

public class LocateByID
{

public static void main (String [] args)
{

// Open browser

https://www.edureka.co/blog/locators-in-selenium/
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#ID
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#Name
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#linkClassName
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#linkTagName
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#LinkText/PartialLinkText
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#CSSSelector
https://www.edureka.co/blog/how-to-find-elements-in-selenium/#XPATHSelector

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

5

6

7

8

9

10

11

12

13

14

15

WebDriver driver = new FirefoxDriver();
//instance of Chrome | Firefox | IE driver

driver.get(<url>);
// Open Application

WebElement elm = driver.findElement(By.id("pt1:_UIShome::icon"));
// will raise NoSuchElementException if not found

elm.click()
//e.g- click the element

}
}

Now let’s understand how to find an element using a name.

Find by Name

This method is similar to Find By Id except the driver will try to locate an element by “name”

attribute instead of “id” attribute.

Syntax:

1

2

3

4

5

6

7

8

public class LocateByName
{

public static void main (String [] args)
{

// Open browser
WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver
driver.get(<url>);
// Open Application

WebElement elm = driver.findElement(By.name("name"));

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

9

10

11

12

13

14

15

// will raise NoSuchElementException if not found
elm.sendKeys("Hi");

//e.g - type Hi in the detected field
}
}

Now let’s move ahead and understand how to find elements in Selenium using the

className.

Find by ClassName

This method finds elements based on the value of the CLASS attribute. More applicable for

locating multiple elements which has a similar css class defined against them.

Syntax:

driver.findElements(By.className(<locator_value>)) ;//for list of elements

or

driver.findElement(By.className(<locator_value>)) ;//single web element

Now let’s understand how to find elements in Selenium using TagName.

Find by Tag Name

This method finds elements based on the HTML tag name of the element. This is not widely

used and used as the last resort if the particular web element can’t be detected by

Id/name/link/className/XPATH/CSS.

Syntax:

driver.findElement(By.tagName(<locator_value>)) ;//single web element

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public class LocateByClass {

public static void main (String [] args){

// Open browser

WebDriver driver = new FirefoxDriver();//instance of Chrome | Firefox | IE driver

driver.get(<url>);// Open Application

List<WebElement> links = driver.findElements(By.className("svg-bkgd01 xi8"));//return an empty list if elements not foun

// loop over the list and perform the logic of a single element
}
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

or

driver.findElements(By.tagName(<locator_value>)) ;//for list of elements

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public class LocateByTagName{

public static void main (String [] args){

// Open browser

WebDriver driver = new FirefoxDriver();//instance of Chrome | Firefox | IE

driver

driver.get(<url>);// Open Application

WebElement ul = driver.findElement(By.id(<id>));

List<WebElement> links = ul.findElements(By.tagName("li"));

...

}

}

This is about how to find an element using TagName. Let’s move ahead and take a look at

how to find elements using LinkText

TextFind by Link Text/Partial Link

With this method, one can find elements of “a” tags (Link) with the link names or having

matching partial link names. This strategy is only applicable in finding element(s) of type

anchor tags which contain a text value.

Syntax

driver.findElement(By.linkText(<link_text>)) ;//single web element

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

or

driver.findElements(By.linkText(<link_text>)) ;//for list of elements

driver.findElement(By.partialLinkText(<link_text>)) ;//single web element

or

driver.findElements(By.partialLinkText(<link_text>)) ;//for list of elements

This is about how to find elements in Selenium using LinkText. Now let’s understand how to

find elements in Selenium using CSS Selector.

Find by CSS Selector

For websites generating dynamic Ids like ADF based applications or websites which are built

on latest javascript frameworks like – React js which may not generate any Ids or names can’t

use locator by Id/Name strategy to find elements. Instead, we have to use either CSS selector

or XPath selectors.

Selenium Certification Training Course

Explore Curriculum

Choosing a CSS selector over XPath selector for the sake of performance is a myth now. One

can choose a hybrid approach. For simple screens CSS selectors(forward only) is preferred

over XPATH, however, for complex traversal (forward/backward and complex search

conditions) XPATH is the only choice.

CSS selectors have native browser support, so on occasion basis, it can turn out to be faster

than XPATH selector.

XPATHSelector

XPATH is more readable and the learning curve is less steep since it uses standard XML query

syntaxes, however, CSS selectors though have simpler syntax support but are not standard like

XPATH and other documentation support, unlike XPATH.

Following are some of the mainly used formats of CSS Selectors –

https://www.edureka.co/selenium-certification-training?utm_source=blogbanner&utm_campaign=curriculum
https://www.edureka.co/selenium-certification-training?utm_source=blogbanner&utm_campaign=curriculum
https://www.edureka.co/selenium-certification-training?utm_source=blogbanner&utm_campaign=curriculum
https://www.edureka.co/selenium-certification-training?utm_source=blogbanner&utm_campaign=curriculum
https://www.edureka.co/blog/css-selectors-in-selenium/
https://www.edureka.co/blog/xpath-in-selenium/
https://www.edureka.co/blog/css-selectors-in-selenium/
https://www.edureka.co/selenium-certification-training?utm_source=blogbanner&utm_campaign=curriculum

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

• Tag and

• ID

• Tag and Class

• Tag and Attribute

• Tag, Class, and Attribute

• Sub-String Matches

o Starts With (^)

o Ends With ($)

o Contains (*)

• Child Elements

▪ Direct Child

▪ Sub-child

▪ nth-child

Refer below screenshot –

Tag with ID

css= tag # id

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

public class LocateByCSSSelector
{

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver
 driver.get(<url>);

// Open Application

WebElement el = driver.findElement(By.cssSelector("input#pt1:r1:0:rt:1:r2:0:dynamicRegion1:1:AP1:inputText562::content"));

el.sendKeys("Location1");

}

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

Tag and class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

css = tag.class

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver

 driver.get(<url>);

// Open Application

WebElement el = driver.findElement(By.cssSelector("input.x25"));

el.sendKeys("Location1");

 }

}

Tag and attribute

1

2

3

4

5

6

7

css = tag[attribute=value]

public class LocateByCSSSelector{

 public static void main (String [] args){
 WebDriver driver = new FirefoxDriver();//instance of Chrome | Firefox | IE driver

 driver.get(<url>);// Open Application
WebElement el = driver.findElement(By.cssSelector("input[name='pt1:r1:0:rt:1:r2:0:dynamicRegion1:1:AP1:inputText562']"));

el.sendKeys("Location1");
 }

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

8

9

10

}

Tag, class, and attribute

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

css = tag.class[attribute=value]

public class LocateByCSSSelector

{

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver
 driver.get(<url>);

// Open Application

WebElement el = driver.findElement(By.cssSelector("input.x25[name='pt1:r1:0:rt:1:r2:0:dynamicRegion1:1:AP1:inputText562']"));

el.sendKeys("Location1");
 }

}

Substring matches

 Starts with –

1

2

3

4

5

6

7

8

9

10

public class LocateByCSSSelector
{

public static void main (String [] args)
{

WebDriver driver = new FirefoxDriver(); //instance of Chrome | Firefox | IE driver
driver.get(<url>); // Open Application

WebElement el = driver.findElement(By.cssSelector("input[name^='pt1:r1:0:rt']"));
el.sendKeys("Location1");

}
}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

Ends with –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

[attribute^=prefix of the string]
public class LocateByCSSSelector

{

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver
 driver.get(<url>);

// Open Application

WebElement el =

driver.findElement(By.cssSelector("input[name$='1:AP1:inputText562']"));
el.sendKeys("Location1");

 }

}

Refer same example screenshot above.

Contains

1

2

3

public class LocateByCSSSelector
{

 public static void main (String [] args)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

4

5

6

7

8

9

10

11

12

13

14

15

16

17

{

 WebDriver driver = new FirefoxDriver();

//instance of Chrome | Firefox | IE driver
 driver.get(<url>);// Open Application

WebElement el = driver.findElement(By.cssSelector("input[name*='AP1']"));

el.sendKeys("Location1");

 }

}

Alternately the above syntax can be written as below –

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public class LocateByCSSSelector
{

 public static void main (String [] args)

{
//instance of Chrome | Firefox | IE driver

 WebDriver driver = new FirefoxDriver();

driver.get(<url>);// Open Application

WebElement el = driver.findElement(By.cssSelector("input:contains('AP1')]"));

el.sendKeys("Location1");

 }

}

Locating child elements(direct child/sub child)

Syntax:

parentLocator>childLocator

public class LocateByCSSSelector

{

public static void main (String [] args)

{

WebDriver driver = new FirefoxDriver();//instance of Chrome | Firefox | IE driver

driver.get(<url>);// Open Application

WebElement el = driver.findElement(By.cssSelector(“div#grid_toplevl_container >

div#groupNode_workforce_management”));

el.click();

}

}[/java]

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

• Sub child

• Same as before only the locator can be a direct child/sub child

• Nth child

• Using nth-of-type

For detecting “Female” from the above li dropdown

1

2

3

4

5

6

7

8

9

10

11

public class LocateByCSSSelector
{

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();//instance of Chrome |

Firefox | IE driver
 driver.get(<url>);// Open Application

WebElement el = driver.findElement(By.cssSelector("ul#_FO... li:nth-of-

type(2)"));
el.click();

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

12

13

14

15

 }

}

Alternatively, you can check out the Automation Engineer Course by Edureka and get

certified!

Find by XPATH selector

In our test automation codes, we generally prefer to use id, name, class, etc. these kinds of

locators. However, sometimes we can not find any of them in the DOM and also sometimes

locators of some elements change dynamically in the DOM. In these kinds of situations, we

need to use smart locators. These locators must be capable to locate complex and dynamically

changing web elements.

Recently when I was working on automation of regression testing of Oracle Fusion SaaS

screens, I was struggling to identify a methodology of locating web elements. The same version

of SaaS instance across various environments was generating different Ids.XPATH selectors

came to my rescue and I mostly used contains() option to locate the web elements.

There are also other tactics of writing XPATH selectors. These are briefly explained below –

Absolute and Relative XPath

Absolute Relative

A direct way to locate an element Starts from the middle of the DOM element

Brittle can break if the path of accessing the

element changes due to the position

Relatively stable since the search is relative

to DOM

Starts with “/” and from the root
Starts with “//” and it can start search

anywhere in the DOM

Longer XPATH expressions Shorter expressions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

//tag[@attribute='value']

public class LocateByXPATHSel

{

 public static void main (String [] args)

{

 WebDriver driver = new FirefoxDriver();//instance of Chrome | Firefox | IE

driver
 driver.get(<url>);// Open Application

WebElement el =

driver.findElement(By.xpath("xpath=//button[@id='pt1:r1:0:r0:1:AP1:APb']")); // trying to
 locate a buttton

el.click();

 }

https://www.edureka.co/masters-program/automation-testing-engineer-training

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

19 }

Using contains()

It is very handy XPath Selenium locator and sometimes it saves the life of a test automation

engineer. When an attribute of an element is dynamic, then we can use contains() for the

constant part of the web element but also you can use contains() in any condition when you

need.

Fusion Instance#1

Fusion Instance#2

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

If we compare the same field it has 2 dynamically generated Ids –

//input[@id=’pt1:_FOr1:1:_FONSr2:0:MAnt2:1:pt1:pt_r1:0:pt1:SP1:NewPe1:0:pt_r1:0:r1:0:i

1:0:it20::content’]

Starts-with

This method checks the starting text of an attribute. It is very handy to use when the attribute

value changes dynamically but also you can use this method for non-changing attribute values.

This comes handy when the prefix part of the id of the dynamic web element is constant.

Syntax:

//tag[starts-with(@attribute, ‘value‘)]

Example:

//input[starts-with(@id, ‘user’)]

Chained Declarations

We can chain multiple relative XPath declarations with “//” double slash to find an element

location as shown below.

xpath=//div[@id=’pt1:_USSpgl5′]//a[@id=’pt1:_UIScmi4′]

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

Combining ‘and’ ‘or’ operators

Referring the same screenshot above we can write a condition as below –

xpath=//a[@id=’pt1:_UIScmi4′ or @class=’xnk xmi’]

xpath=//a[@id=’pt1:_UIScmi4′ and @class=’xnk xmi’]

Ancestor

We can use this option to find web elements with the help of the ancestor of a particular web

element.

Following-sibling

Select the following siblings of the context node.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS366-SOFTWARE TESTING AND AUTOMATION

Example:

//span[@class=’xnu’]/ancestor::div[@id=’pt1:_USSpgl5′]/following-sibling::div

In the above example we are trying to access all menus under “Administration”.

Following

Starts to locate elements after the given parent node. It finds the element before the following

statement and set as the top node and then starts to find all elements after that node.

Syntax:

//tagName[@attribute=value]//following::tagName

Example:

//div[@id=’xx’]//following::input

So basically the search will start from div whose id=’xx’ and search all elements with tagname

=’input’ following the div tag.

Child

Selects all children elements of the current node.

