3.4. SUPPORT SETTLEMENTS IN MOMENT DISTRIBUTION METHOD. #### 3.4.1 SUPPORT SETTLEMENT IN STRUCTURAL ANALYSIS: Support settlements may be caused by **soil erosion**, dynamic soil effects during earthquakes, or by partial failure or settlement of supporting structural elements. Supports could also potentially heave due to frost effects (this could be considered a negative settlement). #### 3.4.2. INTRODUCTION: In the last lesson, the force method of analysis of statically indeterminate beams subjected to external loads was discussed. It is however, assumed in the analysis that the supports are unyielding and the temperature remains constant. In the design of indeterminate structure, it is required to make necessary provision for future unequal vertical settlement of supports or probable rotation of supports. It may be observed here that, in case of determinate structures no stresses are developed due to settlement of supports. The whole structure displaces as a rigid body. Hence, construction of determinate structures is easier than indeterminate structures. The statically determinate structure changes their shape due to support settlement and this would in turn induce reactions and stresses in the system. Since, there is no external force system acting on the structures, these forces form a balanced force system by themselves and the structure would be in equilibrium. The effect of temperature changes, support settlement can also be easily included in the force method of analysis. In this lesson few problems, concerning the effect of support settlement are solved to illustrate the procedure. #### 3.4.3. SUPPORT DISPLACEMENTS: The whole structure displaces as a rigid body. Hence, construction of determinate structures is easier than indeterminate structures. The statically determinate structure changes their shape due to support settlement and this would in turn induce reactions and stresses in the system. # INDETERMINATE PROPPED CANTILEVER Redundants B_{y} and C_{y} Chord of Primary System Redundants M_A and B_y Chord of Primary System $\Delta_{A,rel} = 0$ INDETERMINATE BEAM WITH MULTIPLE REDUNDANTS Redundants B_y and C_y Chord of Primary System $\Delta_{D,rel} = 0$ Redundants C_y and D_y Chord of Primary System $\Delta_{D,rel}$ Support settlements in continuous beams #### 3.4.4. NUMERICAL EXAMPLES ON(CONTINUOUS BEAMS): #### PROBLEM NO:01 Analysis the continuous beam shown in fig.2.10,Calculate the support moments using moment distribution method.Support B settlements by 10mm below the levels of A,C and D.Take $E = 2 \times 10^5 \,\text{N/mm}^2$, $I = 132 \times 10^6 \,\text{mm}^4$. Sketch the SF and BM diagrams. Solution: #### • Fixed End Moments: $$MFAB = -6EI\delta/l^2 - Wab^2/l^2 = -6x26400x10x10^{-3}/6^2 - 90x2x4^2/6^2 = -124 \text{ kNm};$$ $$MFBA = -6EI\delta/l^2 + Wa^2b/l^2 = -6x26400x10x10^{-3}/6^2 + 90x2x4^2/6^2 = -4 \text{ kNm}.$$ Span BC: $$\begin{split} MFBC &= 6EI\delta/l^2 - Wab^2/l^2 = 6x26400x10x10^{-3}/5^2 - 80x2x3^2/5^2 = 5.76 \text{ kNm}; \\ MFCB &= 6EI\delta/l^2 + Wa^2b/l^2 = 6x26400x10x10^{-3}/5^2 + 80x2^2x3/5^2 = 101.76 \text{ kNm}. \end{split}$$ Span CD: $$MFCD = -W1^2/12 = -30x4^2/12 = -40 \text{ kNm};$$ MFDC = $$W1^2/12 = 30x4^2/12 = 40 \text{ kNm}$$; #### • Distribution Factor Table: | Joint | Member | k | Σk | Distribution factor (k/Σk) | |-------|--------|-----------------|--------|----------------------------| | В | BA | 3/4x1/6 = I/8 | 13I/40 | 0.385 | | | BC | 1/5 = I/5 | () E | 0.615 | | С | СВ | 1/5 = I/5 | 31I/80 | 0.516 | | | CD | 3/4xI/4 = 3I/16 | | 0.484 | #### • Free BMD: $$MAB = MCD = Wab/l = 90x2x4/6 = 120 \text{ kNm};$$ $$MBC = MCD = Wab/l = 80x2x3/4 = 96 \text{ kNm};$$ $$MCD = Wl^2/8 = 30x4^2/8 = 60 \text{ kNm}.$$ #### • Final Moments: MAB = 0 MBA = 35.841 kNm MBC = -35.841 kNm MCB = 71.648 kNm MCD = -71.648 kNm MDC = 0 ### • Moment Distribution Table: | Joint | A | В | | С | | D | |-----------------|-------------|-----------|---------|---------|---------|-----| | Member | AB | BA | ВС | СВ | CD | DC | | D.F | - | 0.385 | 0.615 | 0.516 | 0.484 | - | | F.E.M | -124 | -4 | 5.76 | 101.76 | -40 | 40 | | Balance A & D | 124 | | | | | -40 | | Carry over | E | 62 | ERING | | -20 | | | Initial Moments | 0 | 58 | 5.76 | 101.76 | -60 | 0 | | Balance B & C | | -24.548 | -39.212 | -21.548 | -20.212 | | | Carry Over | /))) | | -10.774 | -19.606 | | | | Balance B & C | | 4.148 | 6.626 | 10.117 | 9.489 | | | Carry Over | | | 5.059 | 3.313 | | | | Balance B & C | | -1.948 | -3.111 | -1.709 | -1.604 | | | Carry Over | PALI | UI AII | -0.855 | -1.556 | | | | Balance B & C | | 0.329 | -0.526 | 0.803 | 0.753 | | | Carry Over | O_{BSERV} | E OPTIMIZ | 0.402 | 0.263 | | | | Balance B & C | | -0.155 | -0.247 | -0.136 | -0.127 | | | Carry Over | | | -0.068 | -0.124 | | | | Balance B & C | | 0.026 | 0.042 | 0.064 | 0.06 | | | Carry Over | | | 0.032 | 0.021 | | | | Balance B & C | | -0.012 | -0.019 | -0.011 | -0.01 | | | Net Moment | 0 | 35.841 | -35.841 | 71.648 | -71.648 | 0 | ## • Bending Moment Diagram: