
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

UNIT II SPATIAL AND TEMPORAL DATABASES 9

Active Databases Model – Design and Implementation Issues - Temporal Databases

- Temporal Querying - Spatial Databases: Spatial Data Types, Spatial Operators and

Queries – Spatial Indexing and Mining – Applications -– Mobile Databases: Location and

Handoff Management, Mobile Transaction Models – Deductive Databases - Multimedia

Databases.

ACTIVE DATABASES MODEL

A trigger is a procedure which is automatically invoked by the DBMS in response

to changes to the database, and is specified by the database administrator (DBA). A

database with a set of associated triggers is generally called an active database.

Parts of trigger

A triggers description contains three parts, which are as follows

● The event(s) that triggers the rule: These events are usually database update operations

that are explicitly applied to the database. However, in the general model, they could

also be temporal events2 or other kinds of external events

● The condition that determines whether the rule action should be executed: Once the

triggering event has occurred, an optional condition may be evaluated. If no condition

is specified, the action will be executed once the event occurs. If a condition is

specified, it is first evaluated, and only if it evaluates to true will the rule action be

executed

● The action to be taken: The action is usually a sequence of SQL statements, but it could

also be a database transaction or an external program that will be automatically

executed.

Use of trigger

Triggers may be used for any of the following reasons −

● To implement any complex business rule, that cannot be implemented using integrity

constraints.

● Triggers will be used to audit the process. For example, to keep track of changes made

to a table.

● Trigger is used to perform automatic action when another concerned action takes place.

Types of triggers

The different types of triggers are explained below −

● Statement level trigger − It is fired only once for DML statements irrespective of the

number of rows affected by the statement. Statement-level triggers are the default type

of trigger.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

● Before-triggers − At the time of defining a trigger we can specify whether the trigger

is to be fired before a command like INSERT, DELETE, or UPDATE is executed or

after the command is executed. Before triggers are automatically used to check the

validity of data before the action is performed. For instance, we can use before trigger

to prevent deletion of rows if deletion should not be allowed in a given case.

● After-triggers − It is used after the triggering action is completed. For example, if the

trigger is associated with the INSERT command then it is fired after the row is inserted

into the table.

● Row-level triggers − It is fired for each row that is affected by DML command. For

example, if an UPDATE command updates 150 rows then a row-level trigger is fired

150 times whereas a statement-level trigger is fired only for once.

Create database trigger

To create a database trigger, we use the CREATE TRIGGER command. The details

to be given at the time of creating a trigger are as follows −

● Name of the trigger.

● Table to be associated with.

● When trigger is to be fired: before or after.

● Command that invokes the trigger- UPDATE, DELETE, or INSERT.

● Whether row-level triggers or not.

● Condition to filter rows.

● PL/SQL block is to be executed when trigger is fired.

The syntax to create database trigger is as follows:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE|AFTER}

{DELETE|INSERT|UPDATE[OF COLUMNS]} ON table

[FOR EACH ROW {WHEN condition]]

[REFERENCE [OLD AS old] [NEW AS new]]

BEGIN

PL/SQL BLOCK

END.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

DESIGN AND IMPLEMENTATION ISSUES FOR ACTIVE DATABASES

In this section, we discuss some additional issues concerning how rules are designed

and implemented.

The first issue concerns activation, deactivation, and grouping of rules. In addition

to creating rules, an active database system should allow users to activate, deactivate, and

drop rules by referring to their rule names. A deactivated rule will not be triggered by the

triggering event. This feature allows users to selectively deactivate rules for certain periods

of time when they are not needed. The activate command will make the rule active again.

The drop command deletes the rule from the system. Another option is to group rules into

named rule sets, so the whole set of rules can be activated, deactivated, or dropped. It is

also useful to have a command that can trigger a rule or rule set via an explicit PROCESS

RULES command issued by the user.

The second issue concerns whether the triggered action should be executed before,

after, instead of, or concurrently with the triggering event. A before trigger executes the

trigger before executing the event that caused the trigger. It can be used in appli- cations

such as checking for constraint violations. An after trigger executes the trig- ger after

executing the event, and it can be used in applications such as maintaining derived data

and monitoring for specific events and conditions. An instead of trigger executes the

trigger instead of executing the event, and it can be used in applications such as executing

corresponding updates on base relations in response to an event that is an update of a view.

A related issue is whether the action being executed should be considered as a

separate transaction or whether it should be part of the same transaction that triggered the

rule. We will try to categorize the various options. It is important to note that not all options

may be available for a particular active database system.

In fact, most commercial systems are limited to one or two of the options that we

will now discuss. Let us assume that the triggering event occurs as part of a transaction

execution. We should first consider the various options for how the triggering event is

related to the evaluation of the rule’s condition.

The rule condition evaluation is also known as rule consideration , since the action

is to be executed only after considering whether the condition evaluates to true or false.

There are three main possibilities for rule consideration:

1.Immediate consideration. The condition is evaluated as part of the same transaction as

the triggering event, and is evaluated immediately.

This case can be further categorized into three options:

● Evaluate the condition before executing the triggering event.

● Evaluate the condition after executing the triggering event.

● Evaluate the condition instead of executing the triggering event.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

MC4202- ADVANCED DATABASE DESIGNS

2. Deferred consideration. The condition is evaluated at the end of the trans- action that

includes the triggering event. In this case, there could be many

3. Detached consideration. The condition is evaluated as a separate transaction, spawned

from the triggering transaction.

The next set of options concerns the relationship between evaluating the rule

condition and executing the rule action. Here, again, three options are possible: immediate

, deferred, or detached execution. Most active systems use the first option.

That is, as soon as the condition is evaluated, if it returns true, the action is

immediately executed. The Oracle system uses the immediate consideration model, but it

allows the user to specify for each rule whether the before or after option is to be used with

immediate condition evaluation. It also uses the immediate execution model.

The STARBURST system uses the deferred consideration option, meaning that all

rules triggered by a transaction wait until the triggering transaction reaches its end and

issues its COMMIT WORK command before the rule conditions are evaluated.

Another issue concerning active database rules is the distinction between row-level

rules and statement-level rules. Because SQL update statements (which act as triggering

events) can specify a set of tuples, one has to distinguish between whether the rule should

be considered once for the whole statement or whether it should be considered separately

for each row (that is, tuple) affected by the statement.

