

DRIVE SYSTEM:

In robotics, a drive system is the mechanism that powers and controls the movement of the robot's joints, links, and end-effectors. It converts energy from a source into mechanical motion, which can be linear (sliding) or rotary (turning).

Purpose in Robotics:

- Move robot arms, wheels, or tracks.
- Control speed, torque, and direction.
- Provide positioning accuracy.
- Enable coordinated multi-axis movement.

Types of Drive Systems in Robotics:

A. Electric Drive Systems

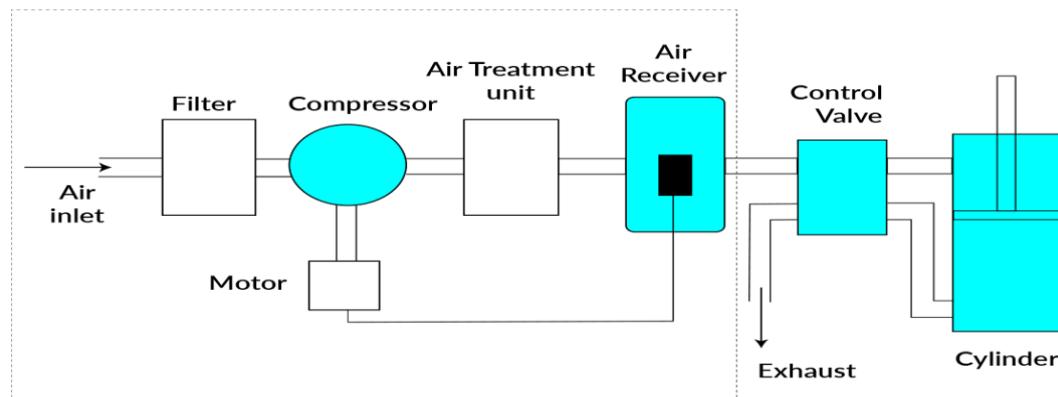
- Actuators: DC motors, stepper motors, servo motors.
- Advantages: High precision, easy control, clean operation.
- Applications: Industrial arms, mobile robots, humanoids.

B. Hydraulic Drive Systems

- Actuators: Hydraulic motors, hydraulic cylinders.
- Advantages: Very high force and torque, good for heavy loads.
- Applications: Construction robots, heavy-duty manipulators.

C. Pneumatic Drive Systems

- Actuators: Pneumatic cylinders, rotary actuators, air motors.
- Advantages: Lightweight, fast action, safe in explosive environments.
- Applications: Grippers, pick-and-place robots, lightweight arms.


PNEUMATIC DRIVES:

A pneumatic drive system operates using compressed air to produce motion. The electric drive systems are capable of moving robots with high power or speed. The actuation of this type of robot can be done by either DC servo motors or DC stepping

motors. It can be well –suited for rotational joints and as well as linear joints. The electric drive system will be perfect for small robots and precise applications. Most

Step-by-step process:

1. Air Compression – An air compressor compresses atmospheric air to a set pressure (usually 5–10 bar).
2. Air Preparation – The air is cleaned (filter), pressure-controlled (regulator), and lubricated (lubricator) using an FRL unit.
3. Distribution – Air flows through pipes or hoses to the control section.
4. Control – Directional control valves decide where the air should go (to extend or retract an actuator).
5. Actuation – The actuator (pneumatic cylinder or motor) converts the air pressure into linear or rotary motion.
6. Exhaust – Used air is released into the atmosphere via exhaust ports, often with silencers to reduce noise.

Features:

- Uses compressed air as power medium.
- Operates at low to medium pressure (5–10 bar typical).
- Produces linear or rotary motion.
- Simple and lightweight components.

- Quick response for high-speed operations.
- Clean and safe for work environments.

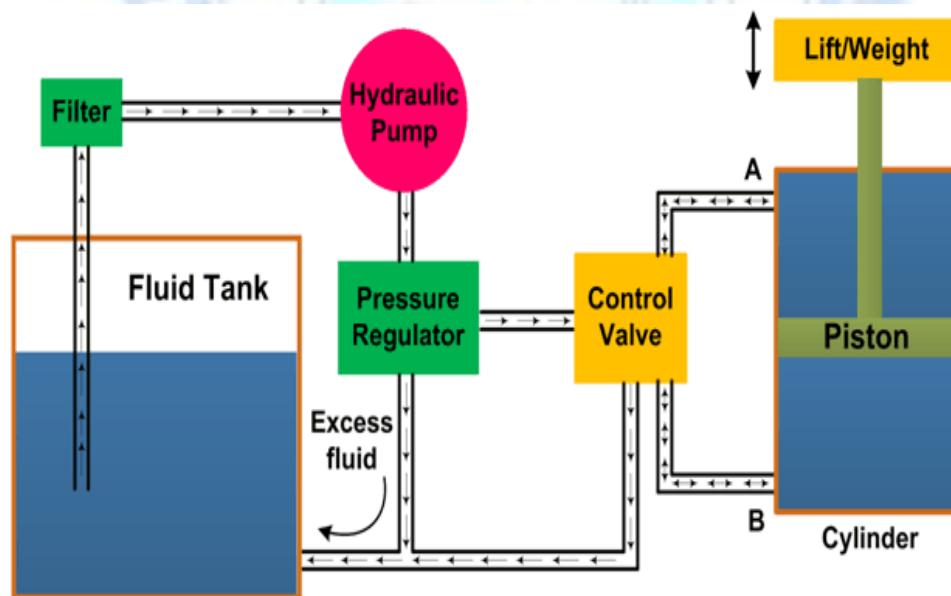
Applications:

- Robotics – Grippers, pick-and-place arms, sorting pushers.
- Manufacturing – Clamping, pressing, assembly automation.
- Packaging – Carton sealing, product ejection, labeling machines.
- Transportation – Air brakes in trucks, buses, trains.
- Medical equipment – Dental drills, hospital bed adjustment.
- Food processing – Soft pneumatic grippers for handling delicate products.
- Mining – Tools in explosive areas where electric sparks are unsafe.

Advantages:

- Clean operation – No oil leakage.
- Safe – Air is non-flammable and non-toxic.
- Lightweight & compact components.
- Fast response – Suitable for high-speed work.
- Overload safe – Stalls without damage.
- Simple design – Easy to maintain.

Disadvantages:


- Lower force output – Not ideal for heavy loads.
- Air compressibility – Makes precise positioning harder.
- Energy inefficient – Air compression consumes more power.
- Moisture issues – Water in air can cause corrosion or freezing.
- Noise – Exhaust air can be loud without silencers.
- Requires constant supply of compressed air.

HYDRAULIC DRIVERS:

A hydraulic drive system works by using pressurized fluid (usually oil) to transmit power and produce motion. The hydraulic drive systems are completely meant for the large-sized robots. It can deliver high power or speed than the electric drive systems. This drive system can be used for both linear and rotational joints. The rotary motions are provided by the rotary vane actuators, while the linear motions are produced by hydraulic pistons.

Step-by-step process:

1. Fluid Reservoir – Stores hydraulic oil.
2. Pump – Driven by an electric motor or engine, it draws oil from the reservoir and pressurizes it.
3. Control Valves – Direct and regulate the pressurized oil flow to actuators.
4. Actuation – Hydraulic cylinders (linear motion) or hydraulic motors (rotary motion) convert fluid pressure into mechanical movement.
5. Return Flow – Oil from the actuator returns to the reservoir via return lines.
6. Filtration – Filters remove contaminants to maintain oil quality.

Features:

- Uses incompressible fluid (oil) as the power medium.
- Operates at high pressure (typically 70–350 bar, sometimes more).

- Can produce very high force and torque.
- Smooth and controllable movement.
- Works effectively in heavy-duty applications.
- Closed-loop fluid circuit.

Applications:

- Heavy-duty industrial robots – For handling large, heavy workpieces in factories.
- Construction robots – Robotic excavators, demolition arms.
- Underwater robots (ROVs) – Hydraulic systems resist water ingress and provide strong movement.
- Aerospace maintenance robots – High-force actuation for lifting and assembly.
- Mining robots – Rock drilling, material handling.
- Rescue robots – Hydraulic cutters, spreaders (like the "Jaws of Life").

Advantages:

- Very high force output – Suitable for heavy loads.
- Precise control – Smooth speed and position control.
- Compact size for high power – High power-to-weight ratio.
- Overload protection – Can use relief valves to prevent damage.
- Works in harsh environments – Dust, moisture, or extreme conditions.

Disadvantages:

- Leakage – Oil leaks can cause mess and hazards.
- Temperature sensitivity – Oil viscosity changes with temperature.
- Complex maintenance – Pumps, seals, and valves require upkeep.
- Noise – Pump operation can be loud.
- Not as fast as pneumatics – Slower response for rapid movements.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY
ORA351-FOUNDATION OF ROBOTICS

- Environmental impact – Oil disposal and leakage can harm the environment.

