
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

QUEUES:

The Queue can be formally defined as ordered collection of elements that two ends

named as front and rear. From the front end. One can delete the elements and from the

rear end one can insert the elements.

94 10 20 11 55 72 61

Front Rear

QUEUE ADT

 Queue is a collection of elements in which the element can be inserted by one end

called rear and elements can be deleted by other end called front. Queue is a Linear Data

Structure that follows First in First out (FIFO) principle.

 Before the insertion of the element in the qu

 Insertion of element is done at one end of the Queue called “Rear “end of the Queue.

 Deletion of element is done at other end of the Queue called “Front “end of the Queue.

 Example: - Waiting line in the ticket counter.

 Front end Rear end

 Deletion Insertion

Queue Model

Operations on Queue

Fundamental operations performed on the queue are

1. EnQueue

2. DeQueue

1. EnQueue operation:-

 It is the process of inserting a new element at the rear end of the Queue.

 For every EnQueue operation

o Check for Full Queue

o If the Queue is full, Insertion is not possible.

o Otherwise, increment the rear end by 1 and then insert the element in the

rear end of the Queue.

Queue Q

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

2. DeQueue Operation:-

 It is the process of deleting the element from the front end of the queue.

 For every DeQueue operation

o Check for Empty queue

o If the Queue is Empty, Deletion is not possible.

o Otherwise, delete the first element inserted into the queue and then

increment the front by 1.

Exceptional Conditions of Queue

 Queue Overflow

 Queue Underflow

(i) Queue Overflow:

 An Attempt to insert an element X at the Rear end of the Queue when the Queue

is full is said to be Queue overflow.

 For every Enqueue operation, we need to check this condition.

(ii) Queue Underflow:

 An Attempt to delete an element from the Front end of the Queue when the

Queue is empty is said to be Queue underflow.

 For every DeQueue operation, we need to check this condition.

Implementation of Queue

Queue can be implemented in two ways.

1. Implementation using Array (Static Queue)

2. Implementation using Linked List (Dynamic Queue)

1. Array Implementation of Queue

Array Declaration of Queue:

#define ArraySize 5 int Q [ArraySize];

or

int Q [5];

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

Initial Configuration of Queue:

(i) Queue Empty Operation:

Initially Queue is Empty.

 With Empty Queue, Front (F) and Rear (R) points to – 1.

It is necessary to check for Empty Queue before deleting (DeQueue) an element from

the Queue (Q).

Routine to check for Empty Queue

int IsEmpty (Queue Q)

{

if((Front = = - 1) && (Rear = = - 1)) return (1);

}

(ii) Queue Full Operation

As we keep inserting the new elements at the Rear end of the Queue, the Queue

becomes full.

When the Queue is Full, Rear reaches its maximum Arraysize.

 For every Enqueue Operation, we need to check for full Queue condition.

int IsEmpty (Queue Q)

{

if((Front = = - 1) && (Rear = = - 1))

return (1);

}

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

Routine to check for Full Queue

(i) Enqueue Operation

 It is the process of inserting a new element at the Rear end of the Queue.

 It takes two parameters, Enqueue(X, Q). The elements X to be inserted at the Rear

end of the Queue Q.

 Before inserting a new Element into the Queue, check for Full Queue. If the Queue

is already Full, Insertion is not possible.

 Otherwise, Increment the Rear pointer by 1 and then insert the element X at the

Rear end of the Queue.

 If the Queue is Empty, Increment both Front and Rear pointer by 1 and then insert

the element X at the Rear end of the Queue.

Routine to Insert an Element in a Queue

void EnQueue (int X , Queue Q)

{

if (Rear = = Arraysize - 1)

print (" Full Queue !!!!. Insertion not possible");

else if (Rear = = - 1)

{

Front = Front + 1;

 Rear = Rear + 1;

Q [Rear] = X;

}

else

{

int IsFull(Queue Q)

{

if (Rear = = ArraySize -

1) return (1);

}

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

Rear = Rear + 1;

Q [Rear] = X;

}

}

(iv) DeQueue Operation

 It is the process of deleting a element from the Front end of the Queue.

 It takes one parameter, DeQueue (Q). Always front element in the Queue will be

deleted. Before deleting an Element from the Queue, check for Empty Queue.

 If the Queue is empty, deletion is not possible.

 If the Queue has only one element, then delete the element and represent the empty

queue by updating Front = - 1 and Rear = - 1.

 If the Queue has many Elements, then delete the element in the Front and move the

Front pointer to next element in the queue by incrementing Front pointer by 1.

ROUTINE FOR DEQUEUE

void DeQueue (Queue Q)

{

if (Front = = - 1)

 print (" Empty Queue !. Deletion not possible ");

 else

 if(Front = = Rear)

{

X = Q [Front];

Front = - 1;

Rear = - 1;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

}

else

{

X = Q [Front];

 Front = Front + 1 ;

}}

Linked List Implementation of Queue

 Queue is implemented using SLL (Singly Linked List) node.

 Enqueue operation is performed at the end of the Linked list and DeQueue

operation is performed at the front of the Linked list.

 With Linked List implementation, for Empty queue

Front = NULL & Rear = NULL

Linked List representation of Queue with 4 elements

 Q

Declaration for Linked List Implementation of Queue ADT

struct node;

typedef struct node * Queue;

typedef struct node * position;

int IsEmpty (Queue Q);

Queue CreateQueue (void);

void MakeEmpty (Queue Q);

void Enqueue (int X, Queue Q);

void Dequeue (Queue Q);

struct node

{

Front Rear

NULL 40 30 20 10

Header

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

int data ;

position next;

}* Front = NULL, *Rear = NULL;

(i) Queue Empty Operation:

 Initially Queue is Empty.

 With Linked List implementation, Empty Queue is represented as S -> next =

NULL.

 It is necessary to check for Empty Queue before deleting the front element in the

Queue

ROUTINE TO CHECK WHETHER THE QUEUE IS EMPTY

int IsEmpty (Queue Q) Q

{

if(Q next==NULL)

return(1);

Empty Queue

}

(i) EnQueue Operation

 It is the process of inserting a new element at the Rear end of the Queue.

 It takes two parameters, EnQueue (int X , Queue Q). The elements X to be

inserted into the Queue Q.

 Using malloc () function allocate memory for the newnode to be inserted into the

Queue.

 If the Queue is Empty, the newnode to be inserted will become first and last node

in the list. Hence Front and Rear points to the newnode.

 Otherwise insert the newnode in the Rear -> next and update the Rear pointer.

Routine to EnQueue an Element in Queue

void EnQueue (int X, Queue Q)

{

struct node *newnode;

newnode = malloc (sizeof (struct node));

 if (Rear = = NULL)

{

newnode data = X;

newnode next=NULL;

Q -> next = newnode;

Front = newnode;

NULL Header

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

Rear = newnode;

}

else

{

newnode data = X;

newnode next=NULL;

Rear -> next = newnode;

Rear = newnode;

}

}

 Empty Queue

Before Insertion

 After Insertion

 Front Rear

DeQueue Operation

 It is the process of deleting the front element from the Queue.

 It takes one parameter, Dequeue (Queue Q). Always element in the front (i.e)
element pointed by Q -> next is deleted always.

 Element to be deleted is made “temp”.

 If the Queue is Empty, then deletion is not possible.

 If the Queue has only one element, then the element is deleted and Front and Rear

pointer is made NULL to represent Empty Queue.

 Otherwise, Front element is deleted and the Front pointer is made to point to next

node in the list. The free () function informs the compiler that the address that

temp is pointing to, is unchanged but the data present in that address is now

Header Null

Header

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

undefined

Routine to DeQueue an Element from the Queue

void DeQueue (Queue Q)

{

struct node *temp;

if (Front = = NULL)

error (“Empty Queue!!! Deletion not possible.”);

else

if (Front = = Rear)

{

temp = Front;

Q -> next = NULL;

Front = NULL;

Rear = NULL;

free (temp);

}

else

{

temp = Front;

Q -> next = temp -> next;

Front = Front ->Next; free (temp);

}

}

Applications of Queue

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life, Call Center phone systems will use Queues, to hold people calling them in

an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same

order as they arrive, First come first served.

4. Batch processing in operating system.

Front Rear

NULL 40 30 20

Header

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS3353 C PROGRAMMING AND DATA STRUCTURE

5. Job scheduling Algorithms like Round Robin Algorithm uses Queue.

Drawbacks of Queue (Linear Queue)

 With the array implementation of Queue, the element can be deleted logically only

by moving Front = Front + 1.

 Here the Queue space is not utilized fully.

