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EVOLUTION STRATEGIES 

Evolution Strategies (ES) were invented during the 60s and 70s as a technique of 

evolutionary experimentation for solving complex optimization problems, mainly within 

engineering domains. The preferred ES data structures are vectors of real numbers. 

Specifically tailored mutation operators are used to produce slight variations on the vector 

elements by adding normally distributed numbers (with mean zero) to each of the 

components. Recombination operators have been designed for the interchange or mixing 

of "genes" between two or more vectors. These recombinations range from simply 

swapping respective components among two vectors to component-wise computation of 

means. Evolution Strategies have developed sophisticated methods of selection, which are 

especially important when the evolution scheme involves several subpopulations. 

Representation of Individuals 

The basic data structures today's Evolution Strategies deal with, and around which 

most of the ES theory is built, are vectors of real numbers representing a set of parameters 

to be optimized. Therefore, an ES chromosome g, can be simply defined as follows: 

g = (p1,p2, .... ,pn) with pi ∈ K 

Usually the pi are referred to as the object parameters. In the most elementary 

versions of Evolution Strategies only these parameter vectors are subject to evolution. 

However, in order to be able to solve more complex optimization tasks it turns out to be 

advantageous to keep a second vector of strategy parameters, which are used as variances 

to control the range of mutations on the object parameters. Thus we can extend our 

definition for an ES chromosome g the following way: 

g = (p,s) = (p1,p2, .... ,pn), (s1,s2, .... ,sn) with pi , si ∈ K 

Now the ES chromosome vector is two-fold, with each Sj representing the mutation 

variance for the corresponding ft. The additional control parameters s may be considered 

as an internal model of the optimization environment 

ES Mutations 



 
We start our journey at some distance from the top plateau with one individual, 

depicted as a gray spot. From the genotype, an ES chromosome containing the x- and y-

coordinates of this individual, we generate five mutated offspring(black spot), the locations 

of which are somewhat close to the parent individual. This set of points comprises our 

initial population on which we will perform a selection-mutation procedure as follows. We 

choose the individual currently with the highest location, from which we generate another 

five children, and continue the same way by selecting the best, generating mutants, etc. 

Repeatedly choosing the best individual and generating mutated offspring, 

gradually makes the population move upwards, like following a gradient to the top plateau. 

A closer look at Figure reveals that smaller mutations are prevalent, i.e. the majority of 

mutants (children) are located near to the wildtype (parent). 

Not only the object parameters, the coordinates in our example, but also the strategy 

parameters, controlling the mutation step sizes, are subject to change. This effect is also 

visible in the figure. Each strategy parameter controls the mutation step size, hence the 

distance of the children from their parents. 



Mutating the Object Parameters  

Mutation is considered the major ES operator for variations on the chromosomes. 

Mutations of the object and strategy parameters are accomplished in different ways. 

Basically, ES mutation on a chromosome g = (p, s) can be described as follows: 

gmut = (pmut ,smut) = (p +Ν0(s), α(s)). 

Here Ν0(s) denotes normal distribution with mean zero and the vector of variances 

s. α defines a function for adapting the strategy parameters. The variations on the object 

parameters are to be applied to each vector element separately: 

pmut = (pl +Ν0(s1)),......,pn +Ν0(sn)) 

The strategy parameters are adjusted in an analogous way as 

smut = (α(s1), α(s2), …… , α(sn)) 

Let us assume that strategy parameters remain unchanged, i.e., we use the identity 

mapping α(x) = x. 

Figure graphically depicts this basic mutation scheme. Each strategy parameter 

controls the mutation range for its respective object parameter. In order to have mutations, 

prefer smaller changes to larger ones. Evolution Strategies use normal (Gaussian) 

distributed random numbers that are added to the object parameters. The characteristics of 

Gauss distributions, Νm(d) with mean m and standard deviation √d, 

 
are their preference for numbers around mean m. Thus, in the case of m = 0, smaller 

values close to zero are selected more often than values with greater distance to m. 



 
 

Mutating the Strategy Parameters 

There are two methods generally used for adapting the strategy parameters s of an 

ES chromosome g = (p,s): 

gmut = (pmut ,smut) = (p +Ν0(s), α(s)). 

Here α defines a function for adapting the strategy parameters: 

smut = (α(s1), α(s2), …… , α(sn)) 

Each strategy parameter controls the mutation range of its respective object 

parameter, defining the variance for the normal distributed random values added to the 

object parameters. 

There are several methods for defining α which work fairly well in changing the 

strategy parameters; this adaptation is usually referred to as Mutative Step size Adaptation 

(MSA). 

 
Here χ  denotes a uniformly distributed random variable from the interval [0,1]. For 

n < 100 parameters, β values will be between 1.3 and 1.5. For β = 1.3 means that half of 

the strategy parameters are multiplied by 1.3, the rest is multiplied by 0.77 = 1/1.3. 



ES Recombinations 

Recombination operators create new chromosomes by composing corresponding 

parts of two or more chromosomes. For the binary case, where two ES chromosomes,  

ga = (pa ,sa) and gb = (pb ,sb) 

are to be recombined by an operator ωrec and describe the composition of a new 

chromosome as follows: 

 
Each element of the object and strategy parameter vector is a combination of the 

respective entries of ga and gb, by two functions ρp and ρs  : 

 

Here the functions ρp and ρs define the component-wise recombination mapping for 

the object and strategy parameters, respectively. In order to keep the formulas simpler, we 

will assume an identical recombination mapping for both the object and strategy 

parameters, ρ = ρp = ρs 

Two recombination mappings in Evolution Strategies are discrete ρ = ρdis and 

intermediate ρ = ρint recombination.  

Discrete Recombination: 

With a discrete recombination function, ρdis one of the two vector components is 

chosen at random and declared to be the new vector entry. For the case of binary 

recombination this means: 

 
Here χ computes a uniformly distributed random number from the interval [0,1]. 

Each component xa or xb is selected with a 50-percent probability. In general, for μ values 

x1 , x2  , …. xμ to be recombined in discrete manner, ρdis(x1 , x2  , …. xμ), the probability 

to choose parameter xi is l/μ.  



 
The above figure illustrates discrete recombination of three ES chromosomes 

(p1,s1), (p3,s3) and (p6,s6) into a new chromosome (p′,s′). In Evolution Strategies discrete 

recombinations are mainly used for interchanging strategy parameters, i.e., usually ρ = ρdis 

Intermediate Recombination: 

For many ES application domains dealing with real numbers that represent some 

control parameter settings, taking the mean value of corresponding elements turns out to 

be a sensible and natural operator. This is exactly what intermediate recombination does. 

Recombining μ chromosomes intermediately means that the following mapping, ρint, is 

applied to each set of corresponding vector components: 

 
 



In Evolution Strategies intermediate recombination is inter-chromosomal operator 

used for object parameters, i.e., usually ρ = ρint 

Local and Global Recombinations: 

Local recombinations work on a subpopulation of chromosomes, whereas for global 

recombinations each component can be selected from the set of corresponding entries 

among all chromosomes in a population. This results in an increased mixing of genotypic 

information. The multi recombination on a (sub-)population G = (xi,... ,Xn) of n ES 

chromosomes, each being of the form 

 
A multi-recombination operator Wrec working on r chromosomes will be for- 

malized as: 

 

Local intermediate and discrete recombinations  , i.e., for r recombinants the 

new chromosome is computed as follows: 

 

We define a global recombination operator,  that combines elements "per 

column" as follows: 

 

 
Evolution Scheme 

ES schemes are known as comma and plus strategies. Initial scheme is started with 

one parent producing one or more mutated offspring and extends with μ parents producing  

λ  mutated offspring . 

 Evolution Schemes: 

The most simple and original ES scheme is known as a (1 + λ) Evolution Strategy. 

In Figure, a single parent individual produces λ offspring by mutation.  



 
The parent genotype is duplicated λ times and all copies are subsequently mutated. 

The offspring's phenotypes are evaluated and both sets of individuals, the parent and 

offspring, find themselves in a selection pool. Only the best of these individuals will 

survive and serve as the parent for the next generation loop. The abbreviated notation for 

this kind of reproduction process is (1 + λ)-ES, where the 1 refers to the number of parents 

and λ is the number of offspring. The '+' sign is used to describe the composition of the 

final selection pool which contains the parent as well as its children. With a (1+λ)-ES the 

single parent survives into the following generation if all its offsprings' fitnesses are worse. 

Thus the parent can only be replaced by a superior offspring individual, which means that 

the fitness of the best-so-far individual either remains the same or increases. 

A simple remedy for this is to exclude the parent individual from the final selection 

pool using a (1, λ)-strategy. By excluding the parent from the selection pool, the best 

individual among the offspring becomes the new parent individual for the next generation. 

This selection scheme is referred to as a (1, λ)-ES, the comma symbolizing the parent's 

exclusion from the selection pool. 

 

 Evolution Schemes: 



Taking into account that several μ parents produce a population of (λ) offspring, we 

arrive at a (μ + λ)-ES or a (μ , λ)-ES, respectively. Instead of selecting a single individual 

from the selection pool as the designated parent, now the μ best individuals among the 

selection pool of λ individuals will survive into the next generation. In the case of a (μ , λ)-

ES strategy, we must ensure that there are enough individuals from which to select, that is, 

λ ≥ μ 

 
 


