4.3.2 Raspberry Pi GPIO Access

GPIO (General Purpose Input Output) pins can be used as input or output and allows raspberry pito
connect with general purpose I/O devices.

» Raspberry pi 3 model B took out 26 GPIO pins on board.

» Raspberry pi can control many external I/O devices using these GPIO’s.

» These pins are a physical interface between the Pi and the outside world.

» We can program these pins according to our needs to interact with external devices. For
example, if we want to read the state of a physical switch, we can configure any of the
available GPIO pins as input and read the switch status to make decisions. We can also
configure any GPIO pin as an output to control LED ON/OFF.

» Raspberry Pi can connect to the Internet using on-board Wi-Fi or Wi-Fi USB adapter. Once
the Raspberry Pi is connected to the Internet then we can control devices, which are
connected to the Raspberry Pi, remotely.

GPIO Pins of Raspberry Pi 3 are shown in below figure:

3.3v 5V
GPIO2 (SDA1) 5V
GPIO3 (SCL1) GND

-
-

GPIO4 (GPIO_GCLK)
GND

) GPIO17 (GPIO_GENO)
GPIO27 (GPIO_GEN2)
GPI0O22 (GPIO_GENS3)
3.3V

GPIO10 (SPI0_MOSI)
GPIO9 (SPI0_MISO)
GPIO11 (SPI0_CLK)
GND

ID_SD (12C EEPROM)
GPIO5

GPIOS

GPIO13

GPIO19

GPIO26

GND

Vv

f————

GPIO14 (UART_TXDO)
GPIO15 (UART_RXDO)
GPIO18 (GPIO_GEN1)
GND

GPI023 (GPIO_GEN4)
GPI024 (GPIO_GENS)
GND

GPI025 (GPIO_GENS)
GPIO8 (SPI_CEO_N)
GPIO7 (SPI_CE1_N)
ID_SC (12C EEPROM)
GND

GPIO12

GND

GPIO16

GPI020

GPIO21

Raspberry Pi 3 Model B GPIO Pin Mapping
Some of the GPIO pins are multiplexed like 12C, SPI, UART etc. We can use any of the GPIO pins for
our application.

Pin Numbering

We should define GPIO pin which we want to use as an output or input. But Raspberry Pi hastwo ways
of defining pin number which are as follows:

GPIO Numbering

Physical Numbering

In GPIO Numbering, pin number refers to number on Broadcom SoC (System on Chip). So, weshould
always consider the pin mapping for using GPIO pin.

While in Physical Numbering, pin number refers to the pin of 40-pin P1 header on Raspberry PiBoard.
The above physical numbering is simple as we can count pin number on P1 header and assign it as
GPIO.

But, still we should consider the pin configuration diagram shown above to know which areGPIO pins
and which are VCC and GND.

Control LED with Push Button using Raspberry Pi

Control LED using Raspberry Pi Interfacing Diagram

Example

Now, let’s control LED using a switch connected to the Raspberry Pi. Here, we are using Pythonand C
(WiringP1) for LED ON-OFF control.

Control LED using Python

Now, let’s turn an ON and OFF LED using Python on Raspberry Pi. The switch is used tocontrol the
LED ON-OFF.

Python Program for Raspberry Pi to control LED using Push Button

import RP1.GPIO as GPIO #import RP1.GPIO module

LED=32 #pin no. as per BOARD, GPIO18 as per BCMSwitch_input = 29
#pin no. as per BOARD, GPIO27 as per BCM

GPIO.setwarnings(False) #disable warnings GPIO.setmode(GPIO.BOARD) #set pin

numbering format GPIO.setup(LED, GPIO.OUT) #set GPIO as output GPIO.setup(Switch input,

GPIO.IN, pull up down=GPIO.PUD_UP)

while True: if(GPIO.input(Switch_input)):
GPIO.output(LED,GPIO.LOW)
else:
GPIO.output(LED,GPIO.HIGH)
Functions Used:
RPi.GPIO

To use Raspberry Pi GPIO pins in Python, we need to import RPi.GPIO package which has classto
control GPIO. This RPi.GPIO Python package is already installed on Raspbian OS. So, we don’t need
to install it externally. Just, we should include library in our program to use functionsfor GPIO access
using Python. This is given as follows.

import RPi.GPIO as GPIO

GPIO.setmode (Pin Numbering System)

This function is used to define Pin numbering system i.e. GPIO numbering or Physicalnumbering.
Pin Numbering System = BOARD/BCM

E.g. If we use pin number 40 of P1 header as a GPIO pin which we have to configure as outputthen,
In BCM,

GPIO.setmode(GPIO.BCM)GPIO.setup(21, GPIO.OUT)

In BOARD,

GPIO.setmode(GPIO.BOARD)GPIO.setup(40, GPIO.OUT)

GPIO.setup (channel, direction, initial value, pull up/pull down)

This function is used to set the direction of GPIO pin as an input/output.channel — GPIO pin number

as per numbering system. direction — set direction of GPIO pin as either Input or Output.

initial value — can provide initial value

pull up/pull down — enable pull up or pull down if requiredFew examples are given as follows,

GPIO as Output
GPIO.setup(channel, GPIO.OUT)

GPIO as Input
GPIO.setup(channel, GPIO.IN)

GPIO as Output with initial value
GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

GPIO as Input with Pull up resistor
GPIO.setup(channel, GPIO.IN, pull up down = GPIO.PUD_ UP) GPIO.output(channel,

state)
This function is used to set the output state of GPIO pin.

channel — GPIO pin number as per numbering system.

state — Output state i.e. HIGH or LOW of GPIO pin

e.g.
GPIO.output(7, GPIO.HIGH)

GPIO.input(channel)
This function is used to read the value of GPIO pin.e.g.
GPIO.input(9)

Control LED using C (WiringPi)

We can access Raspberry Pi GPIO using C. Here, we are using WiringPi library for accessingRaspberry
Pi GPIO using C.

Before implementing LED blinking using wiringP1i, you can refer How to use WiringP1i library.
C (WiringPi) Program for Raspberry Pi to control LED using Push Button

#include <wiringPi.h>

#include <stdio.h>

int LED = 26; /* GP1026 as per wiringPi, GPIO12 as per BCM, pin no.32 */

int switch_input = 21; /* GPIO21 as per WiringPi, GPIOS5 as per BCM, pin no.29 */int main(){
wiringPiSetup(); /* initialize wiringP1i setup */ pinMode(LED,OUTPUT); /* set GPIO
as output */pullUpDnControl(switch_input, PUD UP);

while (1){

if(digitalRead(switch_input))

digitalWrite(LED,LOW); /* write LOW on GPIO */else

b

H
digitalWrite(LED, HIGH); /* write HIGH on GPIO */

