ANALYTIC FUNCTIONS - NECESSARY AND SUFFICIENT

CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR CO-

ORDINATES

Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at that point but also in some neighbourhood of that point.

Entire Function: [Integral function]

A function which is analytic everywhere in the finite plane is called an entire function.

An entire function is analytic everywhere except at $Z=\infty$.
Example: $e^{z}, \sin z, \cos z, \sinh z, \cosh z$
The necessary condition for $f=(z)$ to be analytic. [Cauchy - Riemann

Equations]

The necessary conditions for a complex function $f=(z)=u(x, y)+$ $i v(x, y)$ to be
analytic in a region R are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ i.e., $u_{x}=v_{y}$ and $v_{x}=-u_{y}$
[OR]
Derive $\mathbf{C}-\mathbf{R}$ equations as necessary conditions for a function $\mathbf{w}=\mathbf{f}(\mathbf{z})$ to be analytic. [Anna, Oct. 1997] [Anna, May 1996]

Proof:

Let $f(z)=u(x, y)+i v(x, y)$ be an analytic function at the point z in a region R.

Since $f(z)$ is analytic, its derivative $f^{\prime}(z)$ exists in $\mathrm{R} f^{\prime}(z)=\operatorname{Lt} \frac{f(z+\Delta z)-f(z)}{\Delta_{z}}$ Let $z=x+i y$

$$
\Rightarrow \Delta z=\Delta_{x}+i \Delta_{y}
$$

$$
z+\Delta_{z}=\left(x+\Delta_{x}\right)+i\left(y+\Delta_{y}\right)
$$

$$
f(z)=u(x, y)+i v(x, y)
$$

$$
f(z+\Delta z)=u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y
$$

$$
f(z+\Delta z)-f(z)=u(x+\Delta x, y+\Delta y)+i v(x+\Delta x, y+\Delta y)-[u(x, y)+
$$

$$
i v(x, y)]
$$

Case (ii)

$$
\begin{align*}
\text { If } \Delta z & \rightarrow 0 \text { Now, we assume that } \Delta x=0 \text { and } \Delta y \rightarrow 0 \\
\therefore f^{\prime}(z) & =\operatorname{Lt}_{\Delta y \rightarrow 0} \frac{[u(x, y+\Delta y)-u(x, y)]+i[v(x, y+\Delta y)-v(x, y)]}{i \Delta y} \\
& =\frac{1}{i} \operatorname{Lt}_{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{\Delta y}+\operatorname{Lt}_{\Delta y \rightarrow 0} \frac{v(x, y+\Delta y)-v(x, y)}{\Delta y} \\
& =\frac{1}{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \\
& =-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

Equating the real and imaginary parts we get

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=-\frac{\partial v}{\partial y} \\
\text { (i.e.) } u_{x} & =v_{y}, \quad v_{x}=-u_{y}
\end{aligned}
$$

The above equations are known as Cauchy-Riemann equations or C-R equations.
Note: (i) The above conditions are not sufficient for $f(z)$ to be analytic. The sufficient conditions are given in the next theorem.
(ii) Sufficient conditions for $f(z)$ to be analytic.

If the partial derivatives u_{x}, u_{y}, v_{x} and v_{y} are all continuous in D and $u_{x}=$ v_{y} and $u_{y}=-v_{x}$, then the function $f(z)$ is analytic in a domain D .

(ii) Polar form of C-R equations

In Cartesian co-ordinates any point z is $z=x+i y$.

In polar co-ordinates, $z=r e^{i \theta}$ where r is the modulus and θ is the argument.

Theorem: If $f(z)=u(r, \theta)+i v(r, \theta)$ is differentiable at $z=r e^{i \theta}$, then $u_{r}=$ $\frac{1}{r} v_{\boldsymbol{\theta}}, v_{r}=-\frac{1}{r} u_{\boldsymbol{\theta}}$
(OR) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta}$ 2cाN=sR/4R

Proof:

Let $z=r e^{i \theta}$ and $w=f(z)=u+i v$
(i.e.) $u+i v=f(z)=f\left(r e^{i \theta}\right)$ Diff. p.w. r. to r, we get

$$
\begin{equation*}
\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}=f^{\prime}\left(r e^{i \theta}\right) e^{i \theta} \tag{1}
\end{equation*}
$$

Diff. p.w. r. to θ, we get

$$
\begin{equation*}
\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}=f^{\prime}\left(r e^{i \theta}\right) e^{i \theta} \tag{2}
\end{equation*}
$$

$$
=r i\left[f^{\prime}\left(r e^{i \theta}\right) e^{i \theta}\right]
$$

$$
\begin{equation*}
=r i\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right] \text { by } \tag{1}
\end{equation*}
$$

$$
=r i \frac{\partial u}{\partial r}-r \frac{\partial v}{\partial r}
$$

Equating the real and imaginary parts, we get

$$
\frac{\partial u}{\partial \theta}=-i \frac{\partial v}{\partial r}, \quad \frac{\partial v}{\partial \theta}=r \frac{\partial u}{\partial r}
$$

$$
\text { (i.e.) } \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial v}{\partial \theta}
$$

Problems based on Analytic functions - necessary conditions Cauchy -

Riemann equations

Example: 1 Show that the function $f(z)=x y+i y$ is continuous everywhere but not differentiable anywhere.

Solution:

Given $f(z)=x y+i y$

$$
\text { (i.e.) } u=x y, v=y
$$

x and y are continuous everywhere and consequently $u(x, y)=x y$ and $v(x, y)=$ y are continuous everywhere.

Thus $f(z)$ is continuous everywhere.
But

$u=x y$	$v=y$
$u_{x}=y$	$v_{x}=0$
$u_{y}=x$	$v_{y}=1$
$u_{x} \neq v_{y}$	$u_{y} \neq-v_{x}$

$\mathrm{C}-\mathrm{R}$ equations are not satisfied.
Hence, $f(z)$ is not differentiable anywhere though it is continuous everywhere.

Example: 2 Show that the function $f(z)=\bar{z}$ is nowhere differentiable. [A.U
N/D 2012]

Solution:

Given $f(z)=\bar{z}=x-i y$

$\mathrm{C}-\mathrm{R}$ equations are not satisfied anywhere.
Hence, $f(z)=\bar{z}$ is not differentiable anywhere (or) nowhere differentiable.
Example: 3 Show that $f(z)=|z|^{2}$ is differentiable at $z=0$ but not analytic at $\mathbf{z}=\mathbf{0}$.

Solution:

$$
\begin{gathered}
\text { Let } z=x+i y \\
\begin{array}{c}
\bar{z}=x-i y \\
|z|^{2}= \\
z \\
z
\end{array}=x^{2}+y^{2} \\
\text { (i.e.) } f(z)=|z|^{2}=\left(x^{2}+y^{2}\right)+i 0
\end{gathered}
$$

$u=x^{2}+y^{2}$	$\mathrm{v}=0$
$u_{x}=2 x$	$v_{x}=0$
$u_{y}=2 y$	$v_{y}=0$

So, the $\mathrm{C}-\mathrm{R}$ equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ are not satisfied everywhere except at $z=0$.

So, $f(z)$ may be differentiable only at $z=0$.
Now, $u_{x}=2 x, u_{y}=2 y, v_{x}=0$ and $v_{y}=0$ are continuous everywhere and in particular at $(0,0)$.

Hence, the sufficient conditions for differentiability are satisfied by $f(z)$ at $z=0$.
So, $f(z)$ is differentiable at $z=0$ only and is not analytic there.

Inverse function

Let $w=f(z)$ be a function of z and $z=F(w)$ be its inverse function.
Then the function $w=f(z)$ will cease to be analytic at $\frac{d z}{d w}=0$ and $z=F(w)$ will be so, at point where $\frac{d w}{d z}=0$.

Example: 4 Show that $f(z)=\log z$ analytic everywhere except at the origin and find its derivatives.

Solution:

$$
\text { Let } z=r e^{i \theta}
$$

$$
\begin{aligned}
f(z) & =\log z \\
= & \log \left(r e^{i \theta}\right)=\log r+\log \left(e^{i \theta}\right)=\log r+i \theta
\end{aligned}
$$

But, at the origin, $r=0$. Thus, at the origin,

$$
f(z)=\log 0+i \theta=-\infty+i \theta
$$

So, $f(z)$ is not defined at the origin and hence is

$$
\begin{aligned}
& \text { Note }: e^{-\infty}=0 \\
& \log e^{-\infty}=\log 0 ;-\infty=\log 0
\end{aligned}
$$ not differentiable there.

At points other than the origin, we have

$u(r, \theta)$	$v(r, \theta)=\theta$
$=\log r$	$v_{r}=0$
$u_{r}=\frac{1}{r}$	$v_{\theta}=1$
$u_{\theta}=0$	

So, $\log z$ satisfies the $\mathrm{C}-\mathrm{R}$ equations.
Further $\frac{1}{r}$ is not continuous at $z=0$.
So, $u_{r}, u_{\theta}, v_{r}, v_{\theta}$ are continuous everywhere except at $z=0$. Thus $\log \mathrm{z}$ satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$
f^{\prime}(z)=\frac{u_{r}+i v_{r}}{e^{i \theta}}=\frac{\left(\frac{1}{r}\right)+i(0)}{e^{i \theta}}=\frac{1}{r e^{i \theta}}=\frac{1}{z}
$$

Note: $f(z)=u+i v \Rightarrow f\left(r e^{i \theta}\right)=u+i v$

Differentiate w.r.to ' r ', we get

$$
\text { (i.e.) } e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)=\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}
$$

Example: 5 Check whether $w=\bar{z}$ is analytics everywhere. [Anna, Nov 2001]

[A.U M/J 2014]

Solution:
Let $w=f(z)=\bar{z}$
$\mathrm{u}+i v=x-i y$

Hence, $\mathrm{C}-\mathrm{R}$ equations are not satisfied.
\therefore The function $f(z)$ is nowhere analytic.
Example: 6 Test the analyticity of the function $w=\sin z$.
Solution:

$$
\text { Let } \begin{aligned}
w= & f(z)=\sin z \\
& u+i v=\sin (x+i y)
\end{aligned}
$$

$$
\begin{aligned}
& u+i v=\sin \mathrm{x} \cos \mathrm{i} y+\cos \mathrm{x} \sin \mathrm{y} y \\
& u+i v=\sin \mathrm{x} \cosh \mathrm{y}+\mathrm{i} \cos \mathrm{x} \sin \mathrm{~h} y
\end{aligned}
$$

Equating real and imaginary parts, we get

$$
\begin{array}{|l|l|}
\hline u=\sin x \cosh y & v=\cos x \sinh y \\
\hline u_{x} \\
=\cos x \cosh y & v_{x} \\
=-\sin x \sinh y \\
u_{y} & v_{y}=\cos x \cosh y \\
=\sin x \sinh y & \\
\qquad \quad \therefore u_{x}=v_{y} \text { and } u_{y}=-v_{x} \\
\quad \mathrm{C}-\mathrm{R} \text { equations are satisfied. }
\end{array}
$$

Also the four partial derivatives are continuous.
Hence, the function is analytic.
Example: 7 Determine whether the function $2 x y+i\left(x^{2}-y^{2}\right)$ is analytic or not. [Anna, May 2001]

Solution:
Let $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$

$u=2 x y$	$v=x^{2}-y^{2}$

(i.e.)

$\frac{\partial u}{\partial x}=2 y$	$\frac{\partial v}{\partial x}=2 x$
$\frac{\partial u}{\partial y}=2 x$	$\frac{\partial v}{\partial y}=-2 y$
$u_{x} \neq v_{y}$ and $u_{y} \neq-v_{x}$	

$C-R$ equations are not satisfied.
Hence, $f(z)$ is not an analytic function.

Example: 8 Prove that $f(z)=\cosh z$ is an analytic function and find its

derivative.

Solution:
Given $f(z)=\cosh z=\cos (i z)=\cos [i(x+i y]$

$$
=\cos (i x-y)=\cos i x \cos y+\sin (i x) \sin y
$$

$$
u+i v=\cosh x \cos y+i \sinh x \sin y
$$

$u=\cosh x \cos y$	$v=\sinh x \sin y$
$u_{x}=\sinh \mathrm{x} \cos \mathrm{y}$	$v_{x}=\cosh \mathrm{x} \sin \mathrm{y}$
u_{y}	$v_{y}=\sinh \mathrm{x} \cos \mathrm{y}$
$=-\cosh x \sin y$	

$$
\begin{aligned}
& u_{x}=v_{y} \text { and } u_{y}=-v_{x} \\
& \mathrm{C}-\mathrm{R} \text { equations are satisfied. }
\end{aligned}
$$

$\therefore f(z)$ is analytic everywhere.
Now, $f^{\prime}(z)=u_{x}+i v_{x}$

$$
\begin{aligned}
& =\sinh x \cos y+i \cosh x \sin y \\
& =\sinh (x+i y)=\sinh z
\end{aligned}
$$

Example: 9 If $w=f(z)$ is analytic, prove that $\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$ where $z=x+$ $i y$, and prove that $\frac{\partial^{2} w}{\partial z \partial \bar{z}}=0$.
[Anna, Nov 2001]

Solution:

Let $w=u(x, y)+i v(x, y)$
As $f(z)$ is analytic, we have $u_{x}=v_{y}, u_{y}=-v_{x}$
Now, $\frac{d w}{d z}=f^{\prime}(z)=u_{x}+i v_{x}=v_{y}-i u_{y}=i\left(u_{y}+i v_{y}\right)$

$$
\begin{aligned}
& =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i\left[\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right] \\
& =\frac{\partial}{\partial x}(u+i v)=-i \frac{\partial}{\partial y}(u+i v) \\
& =\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}
\end{aligned}
$$

We know that, $\frac{\partial w}{\partial z}=0$

$$
\therefore \frac{\partial^{2} w}{\partial z \partial \bar{z}}=0
$$

Also $\quad \frac{\partial^{2} w}{\partial \bar{z} \partial z}=0$

Example: 10 Prove that every analytic function $w=u(x, y)+i v(x, y)$ can be

 expressed as a function of z alone. [A.U. M/J 2010, M/J 2012]
Proof:

Let $z=x+i y$ and $\bar{z}=x-i y$

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z+\bar{z}}{2 i}
$$

Hence, u and v and also w may be considered as a function of z and \bar{z}

$$
\text { Consider } \begin{aligned}
\frac{\partial w}{\partial \bar{z}} & =\frac{\partial u}{\partial \bar{z}}+i \frac{\partial v}{\partial \bar{z}} \\
& =\left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \bar{z}}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \bar{z}}\right)+\left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \bar{z}}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \bar{z}}\right) \\
& =\left(\frac{1}{2} u_{x}-\frac{1}{2 i} u_{y}\right)+i\left(\frac{1}{2} v_{x}-\frac{1}{2 i} v_{y}\right) \\
& =\frac{1}{2}\left(u_{x}-v_{y}\right)+\frac{i}{2}\left(u_{y}+v_{x}\right) \\
& =0 \text { by } C-R \text { equations as } w \text { is analytic. }
\end{aligned}
$$

This means that w is independent of \bar{z}
(i.e.) w is a function of z alone.

This means that if $w=u(x, y)+i v(x, y)$ is analytic, it can be rewritten as a function of $(x+i y)$.

Equivalently a function of \bar{z} cannot be an analytic function of z.

Example: 11 Find the constants a, b, c if $f(z)=(x+a y)+i(b x+c y)$ is analytic.

Solution:

$$
\begin{aligned}
& f(z)=u(x, y)+i v(x, y) \\
& \quad=(x+a y)+i(b x+c y) \\
& \begin{array}{|c|c|}
\hline u=x+a y & v=b x+c y \\
\hline u_{x}=1 & v_{x}=b \\
u_{y}=a & v_{y}=c \\
\hline & \text { Given } f(z) \text { is analytic } \\
\Rightarrow & u_{x}=v_{y} \text { and } u_{y}=-v_{x} \\
1 & =c \quad \text { and } a=-b
\end{array}
\end{aligned}
$$

Example: 12 Examine whether the following function is analytic or not $f(z)=$ $e^{-x}(\cos y-i \sin y)$.

Solution:

Given $f(z)=e^{-x}(\cos y-i \sin y)$

$$
\Rightarrow u+i v=e^{-x} \cos y-i e^{-x} \sin y
$$

$u=e^{-x} \cos y$	$v=-e^{-x} \sin y$
$u_{x}=-e^{-x} \cos y$	$v_{x}=e^{-x} \sin y$

$u_{y}=-e^{-x} \sin \mathrm{y}$	$v_{y}=-e^{-x} \cos y$

Here, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
$\Rightarrow \mathrm{C}-\mathrm{R}$ equations are satisfied
$\Rightarrow f(z)$ is analytic.
Example: 13 Test whether the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}+\tan ^{-1}\left(\frac{y}{x}\right)\right.$ is analytic or not.

Solution:
Given $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}+i \tan ^{-1}\left(\frac{y}{x}\right)\right.$
(i.e.) $u+i v=\frac{1}{2} \log \left(x^{2}+y^{2}+i \tan ^{-1}\left(\frac{y}{x}\right)\right.$

$u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$	$v=\tan ^{-1}\left(\frac{y}{x}\right)$
u_{x}	$v_{x}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left[-\frac{y}{x^{2}}\right]$
$=\frac{1}{2} \frac{1}{x^{2}+y^{2}}(2 x)$	$=\frac{-y}{x^{2}+y^{2}}$
$=\frac{x}{x^{2}+y^{2}}$	$v_{y}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left[\frac{1}{x}\right]$
$=\frac{1}{2} \frac{1}{u_{y}}(2 y)$	

$=\frac{y}{x^{2}+y^{2}}$	$=\frac{x}{x^{2}+y^{2}}$

Here, $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
$\Rightarrow \mathrm{C}-\mathrm{R}$ equations are satisfied
$\Rightarrow f(z)$ is analytic.
Example: 14 Find where each of the following functions ceases to be analytic.
(i) $\frac{z}{\left(z^{2}-1\right)}$
(ii) $\frac{z+i}{(z-i)^{2}}$

Solution:

(i) Let $f(z)=\frac{z}{\left(z^{2}-1\right)}$

$$
f^{\prime}(z)=\frac{\left(z^{2}-1\right)(1)-z(2 z)}{\left(z^{2}-1\right)^{2}}=\frac{-\left(z^{2}+1\right)}{\left(z^{2}-1\right)^{2}}
$$

$f(z)$ is not analytic, where $f^{\prime}(z)$ does not exist.
(i.e.) $f^{\prime}(z) \rightarrow \infty$
(i.e.) $\left(z^{2}-1\right)^{2}=0$
(i.e.) $z^{2}-1=0$

$$
z=1
$$

$$
z= \pm 1
$$

$\therefore f(z)$ is not analytic at the points $z= \pm 1$
(ii) Let $f(z)=\frac{z+i}{(z-i)^{2}}$

$$
\begin{aligned}
& f^{\prime}(z)=\frac{(z-i)^{2}(1)(z+i)[2(z-i)]}{(z-i)^{4}}=\frac{(z+3 i)}{(z-i)^{3}} \\
& f^{\prime}(z) \rightarrow \infty, \text { at } z=i
\end{aligned}
$$

$\therefore f(z)$ is not analytic at $z=i$.

