ANALYTIC FUNCTIONS – NECESSARY AND SUFFICIENT CONDITIONS FOR ANALYTICITY IN CARTESIAN AND POLAR CO-ORDINATES

Analytic [or] Holomorphic [or] Regular function

A function is said to be analytic at a point if its derivative exists not only at

that point but also in some neighbourhood of that point.

Entire Function: [Integral function]

A function which is analytic everywhere in the finite plane is called an entire function.

An entire function is analytic everywhere except at $z = \infty$.

Example: e^z , sin z, cos z, sinhz, cosh z

The necessary condition for f = (z) to be analytic. [Cauchy – Riemann

Equations]

The necessary conditions for a complex function f = (z) = u(x, y) +

iv(x, y) to be

analytic in a region R are $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ i.e., $u_x = v_y$ and $v_x = -u_y$

[OR]

Derive C – R equations as necessary conditions for a function w = f(z) to be analytic. [Anna, Oct. 1997] [Anna, May 1996]

Proof:

Let f(z) = u(x, y) + iv(x, y) be an analytic function at the point z in a region R.

Since f(z) is analytic, its derivative f'(z) exists in R $f'(z) = Lt \frac{f(z+\Delta z)-f(z)}{\Delta_z}$

Let
$$z = x + iy$$

$$\Rightarrow \Delta z = \Delta_x + i\Delta_y$$

$$z + \Delta_z = (x + \Delta_x) + i(y + \Delta_y)$$

$$f(z) = u(x, y) + iv(x, y)$$

$$f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y)$$

$$f(z + \Delta z) - f(z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - [u(x, y) + iv(x, y)]$$

$$= [u(x + \Delta x, y + \Delta y) - u(x, y)] + i[v(x + \Delta x, y + \Delta y) - v(x, y)]$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{u(x + \Delta x, y + \Delta y) - u(x, y) + i[v(x + \Delta x, y + \Delta y) - v(x, y)]}{\Delta x + i\Delta y}$$

Case (i)

If $\Delta z \to 0$, firsts we assume that $\Delta y = 0$ and $\Delta x \to 0$.

$$\therefore f'(z) = \lim_{\Delta x \to 0} \frac{[u(x + \Delta x, y) - u(x, y)] + i[v(x + \Delta x, y) - v(x, y)]}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} + \lim_{\Delta x \to 0} \frac{v(x + \Delta x, y) - v(x, y)}{\Delta x}$$
$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad \dots (1)$$

MA3303 PROBABILITY AND COMPLEX FUNCTIONS

Case (ii)

If
$$\Delta z \to 0$$
 Now, we assume that $\Delta x = 0$ and $\Delta y \to 0$
 $\therefore f'(z) = \lim_{\Delta y \to 0} \frac{[u(x,y+\Delta y)-u(x,y)]+i[v(x,y+\Delta y)-v(x,y)]}{i\Delta y}$
 $= \frac{1}{i} \lim_{\Delta y \to 0} \frac{u(x,y+\Delta y)-u(x,y)}{\Delta y} + \lim_{\Delta y \to 0} \frac{v(x,y+\Delta y)-v(x,y)}{\Delta y}$
 $= \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$
 $= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$
From (1) and (2), we get
 $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$
Equating the real and imaginary parts we get
 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial v}{\partial y}$

 $(i.e.) u_x = v_y, \quad v_x = -u_y$

The above equations are known as Cauchy – Riemann equations or C-R equations. Note: (i) The above conditions are not sufficient for f(z) to be analytic. The sufficient conditions are given in the next theorem.

(ii) Sufficient conditions for f(z) to be analytic.

If the partial derivatives $u_{x,y}u_{y,y}v_x$ and v_y are all continuous in D and $u_{x,y}$ =

 v_y and $u_y = -v_{x'}$ then the function f(z) is analytic in a domain D.

(ii) Polar form of C-R equations

In Cartesian co-ordinates any point z is z = x + iy.

In polar co-ordinates, $z = re^{i\theta}$ where r is the modulus and θ is the argument.

Theorem: If $f(z) = u(r, \theta) + iv(r, \theta)$ is differentiable at $z = re^{i\theta}$, then $u_r =$

$$\frac{1}{r}v_{\theta}, v_{r} = -\frac{1}{r}u_{\theta}$$
(OR) $\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = \frac{-1}{r}\frac{\partial u}{\partial \theta}$
Proof:
Let $z = re^{i\theta}$ and $w = f(z) = u + iv$
(*i.e.*) $u + iv = f(z) = f(re^{i\theta})$
Diff. p.w. r. to r, we get
 $\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r} = f'(re^{i\theta})e^{i\theta}$...(1)
Diff. p.w. r. to θ , we get
 $\frac{\partial u}{\partial \theta} + i\frac{\partial v}{\partial \theta} = f'(re^{i\theta})e^{i\theta}$...(2)
 $= ri[f'(re^{i\theta})e^{i\theta}]$
 $= ri[\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}]$ by (1)
 $= ri\frac{\partial u}{\partial r} - r\frac{\partial v}{\partial r}$

Equating the real and imaginary parts, we get

$$\frac{\partial u}{\partial \theta} = -i\frac{\partial v}{\partial r}, \ \frac{\partial v}{\partial \theta} = r\frac{\partial u}{\partial r}$$

$$(i.e.)\frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}, \ \frac{\partial v}{\partial r} = \frac{-1}{r}\frac{\partial v}{\partial \theta}$$

Problems based on Analytic functions - necessary conditions Cauchy -

Riemann equations

Example: 1 Show that the function f(z) = xy + iy is continuous everywhere but not differentiable anywhere.

Solution:

Given f(z) = xy + iy

$$(i.e.) \quad u = xy, v =$$

x and y are continuous everywhere and consequently u(x, y) = xy and v(x, y) =

y are continuous everywhere.

Thus f(z) is continuous everywhere.

But

$$u = xy \qquad v = y$$

$$u_x = y \qquad v_x = 0$$

$$u_y = x \qquad v_y = 1$$

$$u_x \neq v_y \qquad u_y \neq -v_x$$

C–R equations are not satisfied.

Hence, f(z) is not differentiable anywhere though it is continuous everywhere .

Example: 2 Show that the function $f(z) = \overline{z}$ is nowhere differentiable. [A.U

N/D 2012]

Solution:

Given $f(z) = \overline{z} = x - iy$

i.e.,
$$u = x$$
 $v = -y$
 $\frac{\partial u}{\partial x} = 1$ $\frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial y} = 0$ $\frac{\partial v}{\partial y}$
 $= -1$
 $\therefore u_x \neq v_y$

C-R equations are not satisfied anywhere.

Hence, $f(z) = \overline{z}$ is not differentiable anywhere (or) nowhere differentiable.

Example: 3 Show that $f(z) = |z|^2$ is differentiable at z = 0 but not analytic at

z = 0.

Let
$$z = x + iy$$

 $\overline{z} = x - iy$
 $|z|^2 = z \,\overline{z} = x^2 + y^2$
(*i.e.*) $f(z) = |z|^2 = (x^2 + y^2) + i0$

$$u = x^{2} + y^{2} \qquad v = 0$$
$$u_{x} = 2x \qquad v_{x} = 0$$
$$u_{y} = 2y \qquad v_{y} = 0$$

So, the C-R equations $u_x = v_y$ and $u_y = -v_x$ are not satisfied everywhere except at z = 0.

So, f(z) may be differentiable only at z = 0.

Now, $u_x = 2x$, $u_y = 2y$, $v_x = 0$ and $v_y = 0$ are continuous everywhere and in

particular at (0,0).

Hence, the sufficient conditions for differentiability are satisfied by f(z) at z = 0.

So, f(z) is differentiable at z = 0 only and is not analytic there.

Inverse function

Let w = f(z) be a function of z and z = F(w) be its inverse function.

Then the function w = f(z) will cease to be analytic at $\frac{dz}{dw} = 0$ and z = F(w)

will be so, at point where $\frac{dw}{dz} = 0$.

Example: 4 Show that f(z) = log z analytic everywhere except at the origin and find its derivatives.

Let
$$z = re^{i\theta}$$

$$f(z) = \log z$$
$$= \log(re^{i\theta}) = \log r + \log(e^{i\theta}) = \log r + i\theta$$

But, at the origin, r = 0. Thus, at the origin,

$$f(z) = log0 + i\theta = -\infty + i\theta$$

So, f(z) is not defined at the origin and hence is

not differentiable there.

At points other than the origin, we have

So, *logz* satisfies the C–R equations.

Further $\frac{1}{r}$ is not continuous at z = 0.

So, u_r , u_θ , v_r , v_θ are continuous everywhere except at z = 0. Thus log z satisfies all the sufficient conditions for the existence of the derivative except at the origin. The derivative is

$$f'(z) = \frac{u_r + iv_r}{e^{i\theta}} = \frac{\left(\frac{1}{r}\right) + i(0)}{e^{i\theta}} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

Note :
$$e^{-\infty} = 0$$

 $\log e^{-\infty} = \log 0$; $-\infty = \log 0$

Note:
$$f(z) = u + iv \Rightarrow f(re^{i\theta}) = u + iv$$

Differentiate w.r.to 'r', we get

$$(i.e.) e^{i\theta} f'(re^{i\theta}) = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$

Example: 5 Check whether $w = \overline{z}$ is analytics everywhere. [Anna, Nov 2001]

[A.U M/J 2014]

Hence, C-R equations are not satisfied.

: The function f(z) is nowhere analytic.

Example: 6 Test the analyticity of the function w = sin z.

Let
$$w = f(z) = sinz$$

 $u + iv = sin(x + iy)$

$$u + iv = \sin x \cos iy + \cos x \sin iy$$

$$u + iv = \sin x \cosh y + i \cos x \sin hy$$

Equating real and imaginary parts, we get

Also the four partial derivatives are continuous.

Hence, the function is analytic.

Example: 7 Determine whether the function $2xy + i(x^2 - y^2)$ is analytic or

not. [Anna, May 2001]

Let
$$f(z) = 2xy + i(x^2 - y^2)$$

u = 2xy	$v = x^2 - y^2$

(*i.e.*)
$$\frac{\partial u}{\partial x} = 2y$$
$$\frac{\partial v}{\partial x} = 2x$$
$$\frac{\partial v}{\partial y} = -2y$$
$$u_x \neq v_y \text{ and } u_y \neq -v_x$$

C-R equations are not satisfied.

Hence, f(z) is not an analytic function.

Example: 8 Prove that $f(z) = \cosh z$ is an analytic function and find its

derivative.

Solution:

Given
$$f(z) = \cosh z = \cos(iz) = \cos[i(x + iy)]$$

 $= \cos(ix - y) = \cos ix \cos y + \sin(ix) \sin y$

 $u + iv = \cosh x \cos y + i \sinh x \sin y$

^{BSERVE} OPTIMIZE OUTSPREI

$u = \cosh x \cos y$	$v = \sinh x \sin y$	
	· · · · · · · · · · · · · · · · · · ·	
$u_x = \sinh x \cos y$	$v_x = \cosh x \sin y$	
x 5		
u_{v}	$v_v = \sinh x \cos y$	
uy	y shin i coo y	
, .		
$= -\cosh x \sin y$		$\therefore u_x, u_y, v_x$ and v_y exist and
		\cdots $u_{\chi}, u_{\gamma}, v_{\chi}$ and v_{γ} exist and

are continuous.

$$u_x = v_y$$
 and $u_y = -v_x$

C-R equations are satisfied.

 \therefore f(z) is analytic everywhere.

Now,
$$f'(z) = u_x + iv_x$$

 $= \sinh x \cos y + i \cosh x \sin y$

 $= \sinh(x + iy) = \sinh z$

Example: 9 If w = f(z) is analytic, prove that $\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$ where $z = x + i\frac{\partial w}{\partial y}$

iy, and prove that $\frac{\partial^2 w}{\partial z \partial \overline{z}} = 0.$ [Anna, Nov 2001] Solution: Let w = u(x, y) + iv(x, y)

As f(z) is analytic, we have $u_x = v_y$, $u_y = -v_x$

Now,
$$\frac{dw}{dz} = f'(z) = u_x + iv_x = v_y - iu_y = i(u_y + iv_y)$$

$$= \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = -i\left[\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right]$$

$$= \frac{\partial}{\partial x}(u + iv) = -i\frac{\partial}{\partial y}(u + iv)$$

$$= \frac{\partial w}{\partial x} = -i\frac{\partial w}{\partial y}$$

We know that, $\frac{\partial w}{\partial z} = 0$

$$\therefore \frac{\partial^2 w}{\partial z \partial \overline{z}} = 0$$

Also
$$\frac{\partial^2 w}{\partial \overline{z} \partial z} = 0$$

Example: 10 Prove that every analytic function w = u(x, y) + iv(x, y)can be expressed as a function of z alone. [A.U. M/J 2010, M/J 2012]

Proof:

Let
$$z = x + iy$$
 and $\overline{z} = x - iy$
 $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z + \overline{z}}{2i}$

Hence, u and v and also w may be considered as a function of z and \overline{z}

Consider
$$\frac{\partial w}{\partial \overline{z}} = \frac{\partial u}{\partial \overline{z}} + i \frac{\partial v}{\partial \overline{z}}$$

$$= \left(\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial \overline{z}} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial \overline{z}}\right) + \left(\frac{\partial v}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \overline{z}}\right)$$

$$= \left(\frac{1}{2}u_x - \frac{1}{2i}u_y\right) + i\left(\frac{1}{2}v_x - \frac{1}{2i}v_y\right)$$

$$= \frac{1}{2}(u_x - v_y) + \frac{i}{2}(u_y + v_x)$$

$$= 0 \text{ by } C - R \text{ equations as } w \text{ is analytic.}$$

This means that *w* is independent of \overline{z}

(i.e.) w is a function of z alone.

This means that if w = u(x, y) + iv(x, y) is analytic, it can be rewritten as a function of (x + iy).

Equivalently a function of \overline{z} cannot be an analytic function of z.

Example: 11 Find the constants a, b, c if f(z) = (x + ay) + i(bx + cy) is analytic.

Solution:

$$f(z) = u(x, y) + iv(x, y)$$

$$= (x + ay) + i(bx + cy)$$

$$u = x + ay \qquad v = bx + cy$$

$$u_x = 1 \qquad v_x = b$$

$$u_y = a \qquad v_y = c$$

Given $f(z)$ is analytic

$$\Rightarrow u_x = v_y \text{ and } u_y = -v_x$$

$$1 = c \text{ and } a = -b$$

Example: 12 Examine whether the following function is analytic or not f(z) =

OBSERVE OPTIMIZE OUTSPREAD

Solution:

 $e^{-x}(\cos y - i \sin y).$

Given
$$f(z) = e^{-x}(\cos y - i \sin y)$$

$$\Rightarrow u + iv = e^{-x} \cos y - ie^{-x} \sin y$$

$u = e^{-x} \cos y$	$v = -e^{-x} \sin y$
$u_x = -e^{-x} \cos y$	$v_x = e^{-x} \sin y$

$$u_y = -e^{-x} \sin y \qquad v_y = -e^{-x} \cos y$$

Here, $u_x = v_y$ and $u_y = -v_x$

 \Rightarrow C-R equations are satisfied

 \Rightarrow f(z) is analytic.

Example: 13 Test whether the function $f(z) = \frac{1}{2}log(x^2 + y^2 + tan^{-1}(\frac{y}{x}))$ is

OF ENGINEERING

analytic or not.

$$Given f(z) = \frac{1}{2} \log(x^2 + y^2 + i \tan^{-1}\left(\frac{y}{x}\right))$$

$$(i.e.)u + iv = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}\left(\frac{y}{x}\right)$$

$$u = \frac{1}{2} \log(x^2 + y^2)$$

$$v = \tan^{-1}\left(\frac{y}{x}\right)$$

$$u_x$$

$$v_x = \frac{1}{1 + \frac{y^2}{x^2}} \left[-\frac{y}{x^2}\right]$$

$$= \frac{1}{2} \frac{1}{x^2 + y^2} (2x)$$

$$u_y$$

$$= \frac{1}{2} \frac{1}{x^2 + y^2} (2y)$$

$$v_y = \frac{1}{1 + \frac{y^2}{x^2}} \left[\frac{1}{x}\right]$$

$$= \frac{y}{x^2 + y^2} \qquad = \frac{x}{x^2 + y^2}$$

$$= \frac{x}{x^2 + y^2}$$
Here, $u_x = v_y$ and $u_y = -v_x$

$$\Rightarrow C-R$$
 equations are satisfied
$$\Rightarrow f(z)$$
 is analytic.

Example: 14 Find where each of the following functions ceases to be analytic.

(i)
$$\frac{z}{(z^2-1)}$$
 (ii) $\frac{z+i}{(z-i)^2}$

Solution:

(i) Let
$$f(z) = \frac{z}{(z^2 - 1)}$$

 $f'(z) = \frac{(z^2 - 1)(1) - z(2z)}{(z^2 - 1)^2} = \frac{-(z^2 + 1)}{(z^2 - 1)^2}$

f(z) is not analytic, where f'(z) does not exist.

$$(i.e.) f'(z) \rightarrow \infty$$
$$(i.e.)(z^2 - 1)^2 = 0$$
$$(i.e.) \qquad z^2 - 1 = 0$$
$$z = 1$$
$$z = \pm 1$$

MA3303 PROBABILITY AND COMPLEX FUNCTIONS

 \therefore f(z) is not analytic at the points $z = \pm 1$

(ii) Let
$$f(z) = \frac{z+i}{(z-i)^2}$$

$$f'(z) = \frac{(z-i)^2(1)(z+i)[2(z-i)]}{(z-i)^4} = \frac{(z+3i)}{(z-i)^3}$$
$$f'(z) \to \infty, \text{ at } z = i$$

 $\therefore f(z)$ is not analytic at z = i.

