Simplified IoT Architecture and Core IoT Functional Stack

we present an IoT framework that highlights the fundamental building blocks that are common to most IoT systems and which is intended to help you in designing an IoT network. This framework is presented as two parallel stacks: The IoT Data Management and Compute Stack and the Core IoT Functional Stack. Reducing the framework down to a pair of three-layer stacks in no way suggests that the model lacks the detail necessary to develop a sophisticated IoT strategy. Rather, the intention is to simplify the IoT architecture into its most basic building blocks and then to use it as a foundation to understand key design and deployment principles that are applied to industry-specific use cases.

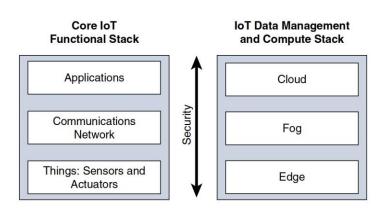


Figure 1.4.1 Simplified IoT Architecture

Nearly every published IoT model includes core layers similar to those shown on the left side of Figure 1.4.1, including "things," a communications network, and applications. However, unlike other models, the framework presented here separates the core IoT and data management into parallel and aligned stacks, allowing you to carefully examine the functions of both the network and the applications at each stage of a complex IoT system. This separation gives you better visibility into the functions of each layer. The presentation of the Core IoT Functional Stack in three layers is meant to simplify your understanding of the IoT architecture into its most foundational building blocks. Of course, such a simple architecture needs to be expanded on. The network communications layer of the IoT stack itself involves a significant amount of detail and incorporates a vast array of technologies. Consider for a moment the heterogeneity of IoT sensors and the many different ways that exist to connect them to a network. The network communications layer needs to consolidate these together, offer gateway and backhaul technologies, and ultimately bring the data back to a central location for analysis and processing.

The applications and analytics layer of IoT doesn't necessarily exist only in the data center or in the cloud. Due to the unique challenges and requirements of IoT, it is often necessary to deploy applications and data management throughout the architecture in a tiered approach, allowing data collection, analytics, and intelligent controls at multiple points in the IoT system. In the model presented in this book, data management is aligned with each of the three layers of the Core IoT Functional Stack. The three data management layers are the edge layer (data management within the sensors themselves), the fog layer (data management in the gateways and transit network), and the cloud layer (data management in the cloud or central data center).

The Core IoT Functional Stack can be expanded into sublayers containing greater detail and specific network functions. For example, the communications layer is broken down into four separate sublayers: the access network, gateways and backhaul, IP transport, and operations and management sublayers.

The applications layer of IoT networks is quite different from the application layer of a typical enterprise network. Instead of simply using business applications, IoT often involves a strong big data analytics component.

The Core IoT Functional Stack

IoT networks are built around the concept of "things," or smart objects performing functions and delivering new connected services. These objects are "smart" because they use a combination of contextual information and configured goals to perform actions.

These actions can be self-contained (that is, the smart object does not rely on external systems for its actions); however, in most cases, the "thing" interacts with an external system to report information that the smart object collects, to exchange with other objects, or to interact with a management platform.

- ➤ "Things" layer: At this layer, the physical devices need to fit the constraints of the environment in which they are deployed while still being able to provide the information needed.
- ➤ Communications network layer: When smart objects are not self-contained, they need to communicate with an external system. In many cases, this communication uses a wireless technology. This layer has four sublayers:
- Access network sublayer: The last mile of the IoT network is the access network. This is typically made up of wireless technologies such as 802.11ah, 802.15.4g, and LoRa. The sensors connected to the access network may also be wired.
- Gateways and backhaul network sublayer: A common communication system organizes multiple smart objects in a given area around a common gateway. The gateway communicates directly with the smart objects. The role of the gateway is to forward the collected information through a longer-range medium (called the backhaul) to a headend central station where the information is processed. This information exchange is a Layer 7 (application) function, which is the reason this object is called a gateway. On IP networks, this gateway also forwards packets from one IP network to another, and it therefore acts as a router.
- Network transport sublayer: For communication to be successful, network and transport layer protocols such as IP and UDP must be implemented to support the variety of devices to connect and media to use.
- ➤ **IoT network management sublayer:** Additional protocols must be in place to allow the headend applications to exchange data with the sensors. Examples include CoAP and MQTT.
- Application and analytics layer: At the upper layer, an application needs to process the collected data, not only to control the smart objects when necessary, but to make intelligent decision based on the information collected and, in turn, instruct the "things" or other systems to adapt to the analysed conditions and change their behaviours or parameters.

Layer 1: Things: Sensors and Actuators Layer

Battery-powered or power-connected: This classification is based on whether the object carries its own energy supply or receives continuous power from an external power source. Battery-powered things can be moved more easily than line-powered objects. However, batteries limit the lifetime and amount of energy that the object is allowed to consume, thus driving transmission range and frequency.

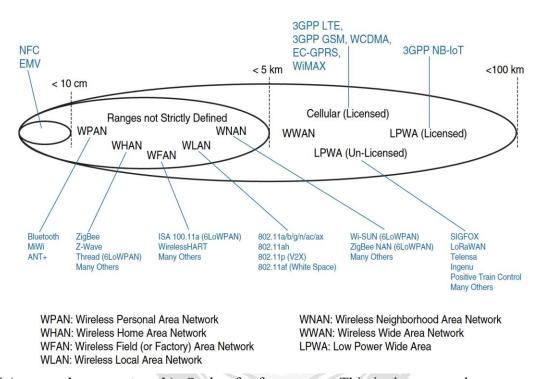
Mobile or static: This classification is based on whether the "thing" should move or always stay at the same location. A sensor may be mobile because it is moved from one object to another (for example, a viscosity sensor moved from batch to batch in a chemical plant) or because it is attached to a moving object (for example, a location sensor on moving goods in a warehouse or factory floor). The frequency of the movement may also vary, from occasional to permanent. The range of mobility (from a few inches to miles away) often drives the possible power source.

Low or high reporting frequency: This classification is based on how often the object should report monitored parameters. A rust sensor may report values once a month. A motion sensor may report acceleration several hundred times per second. Higher frequencies drive higher energy consumption, which may create constraints on the possible power source (and therefore the object mobility) and the transmission range.

Simple or rich data: This classification is based on the quantity of data exchanged at each report cycle. A humidity sensor in a field may report a simple daily index value (on a binary scale from 0 to 255), while an engine sensor may report hundreds of parameters, from temperature to pressure, gas velocity, compression speed, carbon index, and many others. Richer data typically drives higher power consumption.

This classification is often combined with the previous to determine the object data throughput (low throughput to high throughput). You may want to keep in mind that throughput is a combined metric. A medium-throughput object may send simple data at rather high frequency (in which case the flow structure looks continuous), or may send rich data at rather low frequency (in which case the flow structure looks bursty).

Report range: This classification is based on the distance at which the gateway is located. For example, for your fitness band to communicate with your phone, it needs to be located a few meters away at most. The assumption is that your phone needs to be at visual distance for you to consult the reported data on the phone screen. If the phone is far away, you typically do not use it, and reporting data from the band to the phone is not necessary. By contrast, a moisture sensor in the asphalt of a road may need to communicate with its reader several hundred meters or even kilometers away.


Object density per cell: This classification is based on the number of smart objects (with a similar need to communicate) over a given area, connected to the same gate- way. An oil pipeline may utilize a single sensor at key locations every few miles. By contrast, telescopes like the SETI Colossus telescope at the Whipple Observatory deploy hundreds, and sometimes thousands, of mirrors over a small area, each with multiple gyroscopes, gravity, and vibration sensors.

Layer 2: Communications Network Layer

Access Network Sublayer

There is a direct relationship between the IoT network technology you choose and the type of connectivity topology this technology allows. Each technology was designed with a certain number of use cases in mind (what to connect, where to connect, how much data to transport at what interval and over what distance). These use cases deter- mined the frequency band that was expected to be most suitable, the frame structure matching the expected data pattern (packet size and communication intervals), and the possible topologies that these use cases illustrate.

As IoT continues to grow exponentially, you will encounter a wide variety of applications and special use cases. For each of them, an access technology will be required. IoT sometimes reuses existing access technologies whose characteristics match more or less closely the IoT use case requirements. Whereas some access technologies were developed specifically for IoT use cases, others were not.

PAN (personal area network): Scale of a few meters. This is the personal space around a person. A common wireless technology for this scale is Bluetooth.

HAN (home area network): Scale of a few tens of meters. At this scale, common wireless technologies for IoT include ZigBee and Bluetooth Low Energy (BLE).

NAN (neighborhood area network): Scale of a few hundreds of meters. The term NAN is often used to refer to a group of house units from which data is collected.

FAN (field area network): Scale of several tens of meters to several hundred meters. FAN typically refers to an outdoor area larger than a single group of house units.

The FAN is often seen as "open space" (and therefore not secured and not controlled). A FAN is sometimes viewed as a group of NANs, but some verticals see the FAN as a group of HANs or a group of smaller outdoor cells. As you can see, FAN and NAN may sometimes be used interchangeably.

LAN (local area network): Scale of up to 100 m. This term is very common in net-working, and it is therefore also commonly used in the IoT space when standard net-working technologies (such as Ethernet or IEEE 802.11) are used. Other networking classifications, such as MAN (metropolitan area network, with a range of up to a few kilometre's) and WAN (wide area network, with a range of more than a few kilometre's), are also commonly used.

Point-to-point topologies: These topologies allow one point to communicate with another point. This topology in its strictest sense is uncommon for IoT access, as it would imply that a single object can communicate only with a single gateway.

However, several technologies are referred to as "point-to-point" when each object establishes an individual session with the gateway. The "point-to-point" concept, in that case, often refers to the communication structure more than the physical topology.

Point-to-multipoint topologies: These topologies allow one point to communicate with more than one other point. Most IoT technologies where one or more than one gateways communicate with multiple smart objects are in this category. However, depending on the features available on each communicating mode, several subtypes need to be considered. A particularity of IoT networks is that some nodes (for example, sensors) support both data collection and forwarding functions, while some other nodes (for example, some gateways) collect the smart object data, sometimes instruct the sensor to perform specific operations, and also interface with other net- works or possibly other gateways.

Gateways and Backhaul Sublayer

Data collected from a smart object may need to be forwarded to a central station where data is processed. As this station is often in a different location from the smart object, data directly received from the sensor through an access technology needs to be forwarded to another medium (the backhaul) and transported to the central station. The gateway is in charge of this inter-medium communication.

Network Transport Sublayer

The previous section describes a hierarchical communication architecture in which a series of smart objects report to a gateway that conveys the reported data over another medium and up to a central station. However, practical implementations are often flexible, with multiple transversal communication paths. For example, consider the case of IoT for the energy grid. Your house may have a meter that reports the energy consumption to a gateway over a wireless technology. Other houses in your neighbourhood (NAN) make the same report, likely to one or several gateways. The data to be transported is small and the interval is large (for example, four times per hour), resulting in a low-mobility, low-throughput type of data structure, with transmission distances up to a mile.

Several technologies (such as 802.11ah, 802.15.4, or LPWA) can be used for this collection segment. Other neighbourhoods may also connect the same way, thus forming a FAN.

Layer 3: Applications and Analytics Layer

Analytics Versus Control Applications

Analytics application: This type of application collects data from multiple smart objects, processes the collected data, and displays information resulting from the data that was processed. The display can be about any aspect of the IoT network, from historical reports, statistics, or trends to individual system states. The important aspect is that the application processes the data to convey a view of the network that cannot be obtained from solely looking at the information displayed by a single smart object.

Control application: This type of application controls the behaviour of the smart object or the behaviour of an object related to the smart object. For example, a pressure sensor may be connected to a pump. A control application increases the pump speed when the connected sensor detects a drop in pressure. Control applications are very useful for controlling complex aspects of an IoT network with a logic that cannot be programmed inside a single IoT object, either because the configured changes are too complex to fit into the local system or because the configured changes rely on parameters that include elements outside the IoT object.

Data Versus Network Analytics

Analytics is a general term that describes processing information to make sense of collected data. In the world of IoT, a possible classification of the analytics function is as follows:

Data analytics: This type of analytics processes the data collected by smart objects and combines it to provide an intelligent view related to the IoT system. At a very basic level, a dashboard can display an alarm when a weight sensor detects that a shelf is empty in a store. In a more complex case, temperature, pressure, wind, humidity, and light levels collected from thousands of sensors may be combined and then processed to determine the likelihood of a storm and its possible path. In this case, data processing can be very complex and may combine multiple changing values over complex algorithms. Data analytics can also monitor the IoT system itself.

For example, a machine or robot in a factory can report data about its own movements. This data can be used by an analytics application to report degradation in the movement speeds, which may be indicative of a need to service the robot before a part breaks.

Network analytics: Most IoT systems are built around smart objects connected to the network. A loss or degradation in connectivity is likely to affect the efficiency of the system. Such a loss can have dramatic effects. For example, open mines use wireless networks to automatically pilot dump trucks. A lasting loss of connectivity may result in an accident or degradation of operations efficiency (automated dump trucks typically stop upon connectivity loss).