
CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

Virtualization Structures / Tools and Mechanisms

In general, there are three typical classes of VM architecture. Figure below shows the

architectures of a machine before and after virtualization.

Before virtualization, the operating system manages the hardware. After virtualization, a

virtualization layer is inserted between the hardware and the operating system. In such a

case, the virtualization layer is responsible for converting portions of the real hardware into

virtual hardware. Therefore, different operating systems such as Linux and Windows can

run on the same physical machine, simultaneously.

Depending on the position of the virtualization layer, there are several classes of VM

architectures, namely the hypervisor architecture, para-virtualization, and host-based

virtualization. The hypervisor is also known as the VMM (Virtual Machine Monitor). They

both perform the same virtualization operations.

Hypervisor and Xen Architecture

The hypervisor supports hardware-level virtualization (see Figure (b)) on bare metal

devices like CPU, memory, disk and network interfaces. The hypervisor software’s it’s

directly between the physical hardware and its OS. This virtualization layer is referred to as

either the VMM or the hypervisor.

The hypervisor provides hyper calls for the guest OSes and applications. Depending on the

functionality, a hypervisor can assume microkernel architecture like the Microsoft Hyper-V.

Or it can assume monolithic hypervisor architecture like the VMware ESX for server

virtualization.

A micro-kernel hypervisor includes only the basic and unchanging functions (such as

physical memory management and processor scheduling). The device drivers and other

changeable components are outside the hypervisor.

A monolithic hypervisor implements all the aforementioned functions, including those of

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

the device drivers. Therefore, the size of the hypervisor code of a micro-kernel hypervisor is

smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to

convert physical devices into virtual resources dedicated for the deployed VM to use.

The Xen Architecture

Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro-

kernel hypervisor, which separates the policy from the mechanism. The Xen hypervisor implements

all the mechanisms, leaving the policy to be handled by Domain 0, as shown in Figure above.

Xen does not include any device drivers natively. It just provides a mechanism by which guests OS

can have direct access to the physical devices.

As a result, the size of the Xen hypervisor is kept rather small. Xen provides a virtual

environmentlocatedbetweenthehardwareandtheOS.Anumberofvendorsareintheprocess of

developing commercial Xen hypervisors, among them are Citrix Xen Server and Oracle

VM. The core components of a Xen system are the hypervisor, kernel, and applications. The

organization of the three components is important. Like other virtualization systems, many

guest OSes can run on top of the hypervisor. However, not all guest OSes are created equal,

and one in particular controls the others.

The guest OS, which has control ability, is called Domain0, and the others are called

DomainU. Domain0 is a privileged guest OS of Xen. It is first loaded when Xen boots

without any file system drivers being available. Domain0 is designed to access hardware

directly and manage devices. Therefore, one of the responsibilities of Domain 0 is to

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

allocate and map hardware resources for the guest domains (the Domain U domains).

Binary Translation with Full Virtualization

Depending on implementation technologies, hardware virtualization can be classified into

two categories: full virtualization and host-based virtualization.

Full virtualization does not need to modify the host OS. It relies on binary translation to

trap and to virtualize the execution of certain sensitive, non virtualizable instructions. The

guest OSes and their applications consist of noncritical and critical instructions.

In a host-based system, both a host OS and a guest OS are used. A virtualization software

layer is built between the host OS and guest OS.

Full Virtualization

With full virtualization, noncritical instructions run on the hardware directly while critical

instructions are discovered and replaced with traps into the VMM to be emulated by

software.

Both the hypervisor and VMM approaches are considered full virtualization.

Why are only critical instructions trapped into the VMM? This is because binary translation

can incur a large performance overhead.

Noncritical instructions do not control hardware or threaten the security of the system, but

critical instructions do. Therefore, running noncritical instructions on hardware not only can

promote efficiency, but also can ensure system security.

Binary Translation of Guest OS Requests Using a VMM

This approach was implemented by VMware and many other software companies. As

shown in Figure below, VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The

VMM scans the instruction stream and identifies the privileged, control- and behavior

sensitive instructions. When these instructions are identified, they are trapped into the

VMM, which emulates the behavior of these instructions. The method used in this

emulation is called binary translation. Therefore, full virtualization combines binary

translation and direct execution. The guest OS is unaware that it is being virtualized.

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

In direct execution of complex instructions via binary translation of guest OS requests using

the VMM plus direct execution of simple instructions on the same host.

The performance of full virtualization may not be ideal, because it involves binary

translation which is rather time-consuming. In particular, the full virtualization of I/O

intensive applications is a really a big challenge. Binary translation employs a code cache to

store translated hot instructions to improve performance, but it increases the cost of memory

usage.

Host- Based Virtualization

An alternative VM architecture is to install a virtualization layer on top of the host OS. This

host OS is still responsible for managing the hardware. The guest OSes are installed and run

on top of the virtualization layer. Dedicated applications may run on the VMs.

Certainly, some other applications can also run with the host OS directly. This host-based

architecture has some distinct advantages, as,

First, the user can install this VM architecture without modifying the host OS. The

virtualizing software can rely on the host OS to provide device drivers and other low-level

services. This will simplify the VM design and ease its deployment.

Second, the host-based approach appeals to many host machine configurations. Compared

to the hypervisor /VMM architecture, the performance of the host – based architecture may

also be low. When an application requests hardware access, it involves four layers of

mapping which downgrades performance significantly. When the ISA of a guest OS is

different from the ISA of the underlying hardware, binary translation must be adopted.

Although the host-based architecture has flexibility, the performance is too low to be useful

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

in practice.

Para-Virtualization with Compiler Support

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM

providesspecialAPIsrequiringsubstantialOSmodificationsinuserapplications.Performance

degradation is a critical issue of a virtualized system. No one wants to use a VM if it is

much slower than using a physical machine.

The virtualization layer can be inserted at different positions in a machine software stack.

However, para-virtualization attempt store duce the virtualization overhead, and thus

improves performance by modifying only the guest OS kernel. The guest operating systems

are para virtualized.

The traditional x86 processor offers four instruction execution rings: Rings 0,1, 2, and 3.

The lower the ring number, the higher the privilege of instruction being executed. The OS is

responsible for managing the hardware and the privileged instructions to execute at Ring 0,

while user-level applications run at Ring 3.

Para-virtualized VM architecture

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

The use of a para-virtualized guest OS assisted by an intelligent compiler to replace non

virtualizable OS instructions by hyper calls.

Para-Virtualization Architecture:

When the x86 processor is virtualized, a virtualization layer is inserted between the

hardware and the OS. According to the x86 ring definitions, the virtualization layer should

also be installed at Ring 0. The para-virtualization replaces non virtualizable instructions

with hyper calls that communicate directly with the hypervisor or VMM. However, when

the guest OS kernel is modified for virtualization, it can no longer run on the hardware

directly.

Although para-virtualization reduces the overhead, it has incurred other problems. First, its

compatibility and portability may be in doubt, because it must support the unmodified OS as

well. Second, the cost of maintaining para-virtualized OSes is high, because they may

require deep OS kernel modifications. Finally, the performance advantage of para

virtualization varies greatly due to workload variations.

KVM(Kernel-Based VM):

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel.

Memory management and scheduling activities are carried out by the existing Linux kernel.

The KVM does the rest, which makes it simpler than the hypervisor that controls the entire

machine.

KVM is a hardware-assisted para-virtualization tool, which improves performance and

CCS335 - CLOUD COMPUTING

Rohini College of Engineering and Technology

supports unmodified guest OSes such as Windows, Linux, Solaris, and other UNIX variants.

Unlike the full virtualization architecture which intercepts and emulates privileged and

sensitive instructions at run time, para-virtualization handles these instructions at compile

time.

The guest OS kernel is modified to replace the privileged and sensitive instructions with

hyper calls to the hypervisor or VMM. Xen assumes such a para virtualization architecture.

The guest OS running in a guest domain may run at Ring1 instead of at Ring0. This implies

that the guest OS may not be able to execute some privileged and sensitive instructions. The

privileged instructions are implemented by hyper calls to the hypervisor. After replacing the

instructions with hyper calls, the modified guest OS emulates the behavior of the original

guest OS.

	Virtualization Structures / Tools and Mechanisms
	Hypervisor and Xen Architecture
	The Xen Architecture
	Binary Translation with Full Virtualization
	Full Virtualization
	Binary Translation of Guest OS Requests Using a VMM
	Host- Based Virtualization
	Para-Virtualization with Compiler Support
	Para-Virtualization Architecture:
	KVM(Kernel-Based VM):

