CCS335 - CLOUD COMPUTING
Virtualization Structures / Tools and Mechanisms

In general, there are three typical classes of VM architecture. Figure below shows the
architectures of a machine before and after virtualization.

Before virtualization, the operating system manages the hardware. After virtualization, a
virtualization layer is inserted between the hardware and the operating system. In such a
case, the virtualization layer is responsible for converting portions of the real hardware into
virtual hardware. Therefore, different operating systems such as Linux and Windows can
run on the same physical machine, simultaneously.

Depending on the position of the virtualization layer, there are several classes of VM
architectures, namely the hypervisor architecture, para-virtualization, and host-based
virtualization. The hypervisor is also known as the VMM (Virtual Machine Monitor). They
both perform the same virtualization operations.

Application

Virtual
Machines

Host operating system i 6 o

Hardware [Virtualization layer (Hypervisor or VMM) J

Hardware running the Host OS

SCeoOe CSCeOe

(a) Traditional computer (b) After virtualization

Hypervisor and Xen Architecture

The hypervisor supports hardware-level virtualization (see Figure (b)) on bare metal
devices like CPU, memory, disk and network interfaces. The hypervisor software’s it’s
directly between the physical hardware and its OS. This virtualization layer is referred to as
either the VMM or the hypervisor.

The hypervisor provides hyper calls for the guest OSes and applications. Depending on the
functionality, a hypervisor can assume microkernel architecture like the Microsoft Hyper-V.
Or it can assume monolithic hypervisor architecture like the VMware ESX for server
virtualization.

A micro-kernel hypervisor includes only the basic and unchanging functions (such as
physical memory management and processor scheduling). The device drivers and other
changeable components are outside the hypervisor.

A monolithic hypervisor implements all the aforementioned functions, including those of

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING
the device drivers. Therefore, the size of the hypervisor code of a micro-kernel hypervisor is

smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to
convert physical devices into virtual resources dedicated for the deployed VM to use.

The Xen Architecture

Control, IO (Domain 0) Guest domain Guest domain
> > > > > x> > > > >
° © © © © © © © © ©
sl = N - cllBll=]|=
o o o) o o o o o o g
= o L 4 D 4 o o L 4
() o o c o o) o) <) o o
= = =2 > o | = = = =2 =
Domain0 XenoLinux XenoWindows

XEN (Hypervisor)

Hardware devices

Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro-
kernel hypervisor, which separates the policy from the mechanism. The Xen hypervisor implements
all the mechanisms, leaving the policy to be handled by Domain 0, as shown in Figure above.

Xen does not include any device drivers natively. It just provides a mechanism by which guests OS
can have direct access to the physical devices.

As a result, the size of the Xen hypervisor is kept rather small. Xen provides a virtual
environmentlocatedbetweenthehardwareandtheOS.Anumberofvendorsareintheprocess of
developing commercial Xen hypervisors, among them are Citrix Xen Server and Oracle
VM. The core components of a Xen system are the hypervisor, kernel, and applications. The
organization of the three components is important. Like other virtualization systems, many
guest OSes can run on top of the hypervisor. However, not all guest OSes are created equal,
and one in particular controls the others.

The guest OS, which has control ability, is called Domain0O, and the others are called
DomainU. Domain0 is a privileged guest OS of Xen. It is first loaded when Xen boots
without any file system drivers being available. ~ Domain0 is designed to access hardware
directly and manage devices. Therefore, one of the responsibilities of Domain 0 is to

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING
allocate and map hardware resources for the guest domains (the Domain U domains).

Binary Translation with Full Virtualization

Depending on implementation technologies, hardware virtualization can be classified into
two categories: full virtualization and host-based virtualization.

Full virtualization does not need to modify the host OS. It relies on binary translation to
trap and to virtualize the execution of certain sensitive, non virtualizable instructions. The
guest OSes and their applications consist of noncritical and critical instructions.

In a host-based system, both a host OS and a guest OS are used. A virtualization software
layer is built between the host OS and guest OS.

0 Full Virtualization

With full virtualization, noncritica
instructions are discovered and

software. - @,-

W -

Both the hypervisor and VMM-approaches-are-eonsidered full virtualization.

Why are only critical instructions trapped into the VMM? This is because binary translation
can incur a large performance overhead.

Noncritical instructions do not control hardware or threaten the security of the system, but
critical instructions do. Therefore, running noncritical instructions on hardware not only can
promote efficiency, but also can ensure system security.

Binary Translation of Guest OS Requests Using a VMM

This approach was implemented by VMware and many other software companies. As
shown in Figure below, VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The
VMM scans the instruction stream and identifies the privileged, control- and behavior
sensitive instructions. When these instructions are identified, they are trapped into the
VMM, which emulates the behavior of these instructions. The method used in this
emulation is called binary translation. Therefore, full virtualization combines binary
translation and direct execution. The guest OS is unaware that it is being virtualized.

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING

Direct
. . \, ©of user
Ring 2 [Jl \ requests
Ring 1 Guest OS ~— "
) | Binary
Ring O / translation
\ ‘,"' Of OS

V/ :
Host computer W7 requests
system hardware

In direct execution of complex instructions via binary translation of guest OS requests using
the VMM plus direct execution of simpgiemmstructions on the same host.

) not be ideal, because it involves binary

-

#fn particular, the full virtualization of 1/0

The performance of full virtJalize ion-
translation which is rather time-G@g
intensive applications is a really a bjg.t

. . sy
store translated hot instructions t(ﬁm '
usage.

[1 Host- Based Virtualization

An alternative VM architecture is to install a virtualization layer on top of the host OS. This
host OS is still responsible for managing the hardware. The guest OSes are installed and run
on top of the virtualization layer. Dedicated applications may run on the VMs.

Certainly, some other applications can also run with the host OS directly. This host-based
architecture has some distinct advantages, as,

First, the user can install this VM architecture without modifying the host OS. The
virtualizing software can rely on the host OS to provide device drivers and other low-level
services. This will simplify the VM design and ease its deployment.

Second, the host-based approach appeals to many host machine configurations. Compared
to the hypervisor /VMM architecture, the performance of the host — based architecture may
also be low. When an application requests hardware access, it involves four layers of
mapping which downgrades performance significantly. When the ISA of a guest OS is
different from the ISA of the underlying hardware, binary translation must be adopted.
Although the host-based architecture has flexibility, the performance is too low to be useful

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING

in practice.

Para-Virtualization with Compiler Support

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM

providesspecial APIsrequiringsubstantialOSmodificationsinuserapplications.Performance
degradation is a critical issue of a virtualized system. No one wants to use a VM if it is
much slower than using a physical machine.
The virtualization layer can be inserted at different positions in a machine software stack.
However, para-virtualization attempt store duce the virtualization overhead, and thus
improves performance by modifying only the guest OS kernel. The guest operating systems
are para virtualized.

The traditional x86 processor offers four instruction execution rings: Rings 0,1, 2, and 3.

o
N
I. - Ty A '. .
< Application 3 [pplication]
(Para-virtualized) Para-virtualized
guest operating guest operating
L system o system
- A
Hypervisor/ VMM y
.
Hardware
\ J

Para-virtualized VM architecture

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING

execution
of user
requests

l B N\

Ring 2

.\‘

Ring 1

‘Hypercalls® to the
Ring O PR e it virtualization
g guest OS \

| layer replace

: «’ /| nonvirtualizable
Virtualization layer \ / OS instructions

|/
Host computer
system hardware

The use of a para-virtualized gugs
virtualizable OS instructions by hy@eea

4 by an intelligent compiler to replace non

Para-Virtualization Architectur
& =

When the x86 processor is virtualized, a virtualization layer is inserted between the
hardware and the OS. According to the x86 ring definitions, the virtualization layer should
also be installed at Ring 0. The para-virtualization replaces non virtualizable instructions
with hyper calls that communicate directly with the hypervisor or VMM. However, when
the guest OS kernel is modified for virtualization, it can no longer run on the hardware
directly.

Although para-virtualization reduces the overhead, it has incurred other problems. First, its
compatibility and portability may be in doubt, because it must support the unmodified OS as
well. Second, the cost of maintaining para-virtualized OSes is high, because they may
require deep OS kernel modifications. Finally, the performance advantage of para
virtualization varies greatly due to workload variations.

KVM(Kernel-Based VM):
This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel.
Memory management and scheduling activities are carried out by the existing Linux kernel.

The KVVM does the rest, which makes it simpler than the hypervisor that controls the entire
machine.

KVM is a hardware-assisted para-virtualization tool, which improves performance and

Rohini College of Engineering and Technology

CCS335 - CLOUD COMPUTING

supports unmodified guest OSes such as Windows, Linux, Solaris, and other UNIX variants.
Unlike the full virtualization architecture which intercepts and emulates privileged and
sensitive instructions at run time, para-virtualization handles these instructions at compile
time.

The guest OS kernel is modified to replace the privileged and sensitive instructions with
hyper calls to the hypervisor or VMM. Xen assumes such a para virtualization architecture.
The guest OS running in a guest domain may run at Ringl instead of at Ring0. This implies
that the guest OS may not be able to execute some privileged and sensitive instructions. The
privileged instructions are implemented by hyper calls to the hypervisor. After replacing the
instructions with hyper calls, the modified guest OS emulates the behavior of the original
guest OS.

Rohini College of Engineering and Technology

	Virtualization Structures / Tools and Mechanisms
	Hypervisor and Xen Architecture
	The Xen Architecture
	Binary Translation with Full Virtualization
	Full Virtualization
	Binary Translation of Guest OS Requests Using a VMM
	Host- Based Virtualization
	Para-Virtualization with Compiler Support
	Para-Virtualization Architecture:
	KVM(Kernel-Based VM):

