UNIT – I – RANDOM VARAIBLES

Random Experiment

An experiment whose output is uncertain even though all the outcomes

are known.

Example: Tossing a coin, Throwing a fair die, Birth of a baby.

Sample Space:

The set of all possible outcomes in a random experiment. It is denoted by S.

TULAM, KANYAKUN

Example:

For tossing a fair coin, $S = \{H, T\}$

For throwing a fair die, $S = \{1, 2, 3, 4, 5, 6, \}$

For birth of a baby, $S = \{M, F\}$

Event:

A subset of sample space is event. It is denoted by A.

Mutually Exclusive Events:

Two events A and B are said to be mutually exclusive events if they do

not occur simultaneously. If A and B are mutually exclusive, then $A \cap B = \Phi$

Example:

Tossing two unbiased coins $S = \{HH, HT, TH, TT\}$

(i) Let $A = \{HH\}, B = \{HT\}$

 $A \cap B = \{H\} \neq \Phi$

 $\cap R = \Phi$

Then A and B are not mutually exclusive.

(i) Let $A = \{HH\}, B = \{TT\}$

Then A and B are mutually exclusive.

Probability:

Probability of an event A is $P(A) = \frac{n}{n}$

i.e., $P(A) = \frac{number of cases favourable to A}{Total number of cases}$

Axioms of Probability:

(i) $0 \le P(A) \le 1$

(ii) P(S) = 1

(iii)
$$P(A \cup B) = P(A) + P(B)$$
, if A and B are mutually exclusive.

OBSERV

ALKULAM, KANYA

Note:

(i) $P(\phi) = 0$

(ii) $P(\overline{A}) = 1 - P(A)$, for any event A

(iii) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, for any two events A and B.

Independent events:

Two events A and B are said to be independent if occurrence of A does not affect the occurrence of B.

Condition for two events and B are independent:

$$P(A \cap B) = P(A) P(B)$$

Conditional Probability:

If the probability of the event A provided the event B has already occurred is called the conditional probability and is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, provided $P(B) \neq 0$

The probability of an event B provided A has occurred already is given by

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
, provided $P(A) \neq 0$

Random Variables:

A random variable is a function that assign a real number for all the

outcomes in the sample space of a random experiment.

Example:

Toss two coins then the sample space $S = \{HH, HT, TH, TT\}$

Now we define a random variable X to denote the number of heads in 2 tosses.

X(HH) = 2

$$\mathbf{X}(\mathbf{HT}) = 1$$

X(TH) = 1

 $\mathbf{X}(\mathbf{TT}) = \mathbf{0}$

Types of Random Variables:

- (i) Discrete Random Variables
- (ii) Continuous Random Variables

Probability mass function (PMF):

Let X be discrete random variable. Then $P(X = x_i) = p(x_i) = p_i$ is said

to be a Probability mass function of X, if

(i)
$$0 \le p(x_i) \le 1$$

(ii) $\sum_i p(x_i) = 1$

ALRULAM, KANYAKUN

The collection of pairs $\{x_i, p_i\}, i = 1, 2, 3, ...$ is called the probability distribution of the random variable X, which is sometimes in the form of a table as given below:

$X = x_i$	x_1	<i>x</i> ₂		x _r	• • •
$P(X = x_i)$	<i>p</i> ₁	<i>p</i> ₂	• • •	p_r	•••

Problems on Discrete Random Variables

1.A Discrete Random Variable X has the following probability distribution

X	0	1	2	3	4	5	6	7	8
P(x)	a	3 a	5a	7a	9a	11a	13a	15a	1 7 a

- Find the value of "a". (i)
- Find P[X < 3], P[0 < X < 3], $P[X \ge 3]$ **(ii)**
- RINGAN Find the distribution of X. 1 N E (iii)

Solution:

(i) We know that
$$\sum P(x) = 1$$

 $\Rightarrow a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a =$
 $\Rightarrow 81a = 1$
 $\Rightarrow a = \frac{1}{81}$
(ii) $P[X < 3] = P[X = 0] + P[X = 1] + P[X = 2]$

SUMAE

1

$$= a + 3a + 5a$$
$$= 9a$$

$$P[0 < X < 3] = P[X = 1] + P[X = 2]$$

$$= 3a + 5a$$
$$= 8a$$

$$=\frac{8}{81}$$

$$P[X \ge 3] = 1 - P[X < 3]$$

$$= 1 - \frac{9}{81}$$

 $= \frac{72}{81}$

(iii) Distribution of X:

X	P(x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le \mathbf{X}]$
0	a	$F(0) = P[X \le 0] = \frac{1}{81}$
1	3a	$F(1) = P[X \le 1] = F(0) + P(1) = \frac{1}{81} + \frac{3}{81} = \frac{4}{81}$
2	5a O O	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{4}{81} + \frac{5}{81} = \frac{9}{81}$
3	7a	$F(3) = P[X \le 3] = F(2) + P(3) = \frac{9}{81} + \frac{7}{81} = \frac{16}{81}$
4	9a 0	$F(4) = P[X \le 4] = F(3) + P(4) = \frac{16}{81} + \frac{9}{81} = \frac{25}{81}$
5	11a	$F(5) = P[X \le 5] = F(4) + P(5) = \frac{25}{81} + \frac{11}{81} = \frac{36}{81}$
6	13a	$F(6) = P[X \le 6] = F(5) + P(6) = \frac{36}{81} + \frac{13}{81} = \frac{49}{81}$
7	15a	$F(7) = P[X \le 7] = F(6) + P(7) = \frac{49}{81} + \frac{15}{81} = \frac{64}{81}$
8	17a	$F(8) = P[X \le 8] = F(7) + P(8) = \frac{64}{81} + \frac{17}{81} = \frac{81}{81}$

2. A Discrete Random Variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	<i>k</i> ²	2 <i>k</i> ²	$7k^2 + k$

(i) Find the value of "k".

- (ii) Find P[X < 6], P[1 < X < 5], $P[X \ge 6]$, P[X > 2]
- (iii) Find P[1.5 < X < 4.5 / X > 2] = E
- (iv) Find the distribution of X and find the value of k if $P[X < k] > \frac{1}{2}$

Solution:

(i) We know that
$$\sum P(x) = 1$$

 $\Rightarrow 0 + k + 2k + 2k + 3k + k^2 + 2k^2 + 7k^2 + k = 1$
 $\Rightarrow 10k^2 + 9k = 1$
 $\Rightarrow 10k^2 + 9k - 1 = 0$
 $\Rightarrow (k+1)(10k-1) = 0$
 $\Rightarrow k = -1 (or)k = \frac{1}{10}$

(ii)
$$P[X \ge 6] = P[X = 6] + P[X = 7]$$

SERVE OPTIMIZE OUTSPREAD
 $= 2k^2 + 7k^2 + k$
 $= 9k^2 + k$
 $= \frac{9}{100} + \frac{1}{10}$
 $= \frac{19}{100}$
(iii) $P[X < 6] = 1 - P[X \ge 6]$

$$= 1 - \frac{19}{100}$$

 $= \frac{81}{100}$

(iv)
$$P[1 < X < 5] = P[X = 2] + P[X = 3] + P[X = 4]$$

 $= 2k + 2k + 3k$
 $= 7k$ GINEEP
 $= \frac{7}{10}$
(v) $P[1.5 < X < 4.5 / X > 2] = \frac{P[1 \cdot 5 < X < 4 \cdot 5 \cap X > 2]}{P[X > 2]}$
 $= \frac{P[2 < X < 4 \cdot 5]}{P[X > 2]}$
 $= \frac{P[X - 3] + P[X = 4]}{P[X > 2]}$
 $= \frac{5}{10}$

Distribution of X: OBSERVE OPTIMIZE OUTSPREND

X	P(x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le \mathbf{X}]$
0	0	$F(0) = P[X \le 0] = 0$
1	k	$F(1) = P[X \le 1] = F(0) + P(1) = 0 + \frac{1}{10} = \frac{1}{10}$

2	2k	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{1}{10} + \frac{2}{10} = \frac{3}{10}$
3	2k	$F(3) = P[X \le 3] = F(2) + P(3) = \frac{3}{10} + \frac{2}{10} = \frac{5}{10}$
4	3k	$F(4) = P[X \le 4] = F(3) + P(4) = \frac{5}{10} + \frac{3}{10} = \frac{8}{10}$
5	k ²	$F(5) = P[X \le 5] = F(4) + P(5) = \frac{8}{10} + \frac{1}{100} = \frac{81}{100}$
6	2k ²	$F(6) = P[X \le 6] = F(5) + P(6) = \frac{81}{100} + \frac{2}{100} = \frac{83}{100}$
7	$7k^2 + k$	$F(7) = P[X \le 7] = F(6) + P(7) = \frac{83}{100} + \frac{7}{100} + \frac{1}{10} = \frac{100}{100}$

The value of k = 4 when $P[X < k] > \frac{1}{2}$

3. If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) =

3P(X = 2) = P(X = 3) = 5P(X = 4). Find the probability distribution.

Solution:

Let
$$2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = A$$

$$\Rightarrow 2P(X = 1) = k$$
$$\Rightarrow P(X = 1) = \frac{k}{2}$$
$$\Rightarrow 3P(X = 2) = k$$
$$\Rightarrow P(X = 2) = \frac{k}{3}$$

$$\Rightarrow P(X = 3) = k$$
$$\Rightarrow 5P(X = 3) = k$$
$$\Rightarrow P(X = 3) = \frac{k}{5}$$

We know that $\sum P(x) = 1$ $\Rightarrow P(1) + P(2) + P(3) + P(4) = 1$ $\Rightarrow \frac{k}{2} + \frac{k}{3} + k + \frac{k}{5} = 1$ $\Rightarrow \frac{15k + 10k + 30k + 6k}{30} = 1$ $\Rightarrow \frac{61k}{30} = 1$ $\Rightarrow k = \frac{30}{61}$

The Probability Distribution is

		NANY KANYAY		
Х	1	2	3	4
P(x)	$\frac{k}{2} = \frac{1}{2} \times \frac{30}{61} = \frac{15}{61}$	$\frac{k}{3} = \frac{1}{3} \times \frac{30}{61} = \frac{10}{61}$	$TSR_{k}^{RE} = \frac{30}{61}$	$\frac{k}{5} = \frac{1}{5} \times \frac{30}{61} = \frac{6}{61}$
		•		

4. Suppose that the random variable X assumes three values 0, 1 and 2 with probabilities 1/3, 1/6 and ½ respectively. Obtain the distribution function of X. Solution:

Values of $X = x$	0	1	2
P(x)	1/3	1/6	1/2
	P(0)	P(1)	P(2)
	1(0)	1(1)	1(2)

The distribution of X

	NGINEED.						
X	P (x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le \mathbf{X}]$					
0	0	$F(0) = P[X \le 0] = \frac{1}{3}$					
	- 4						
1	k –	$F(1) = P[X \le 1] = F(0) + P(1) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$					
	181						
2	2k	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{1}{2} + \frac{1}{2} = 1$					
	1						
L							

Mathematical expectation for discrete random variable

Note:

LAM, KANYAK

OBSERVE OPTIMIZE OUTSPREAD

- (i) E(c) = c
- (ii) Var(c) = 0
- (iii) E(aX) = aE(X)
- (iv) E(aX + b) = aE(X) + b
- (v) $Var(aX) = a^2 Var(X)$
- (vi) $Var(aX \pm b) = a^2 Var(X)$

Problems:

If Var(X) = 4, find Var(4X + 5), where X is a random variable.

Solution:

We know that $Var(aX + b) = a^2 Var(X)$

Here
$$a = 4$$
, $Var(X) =$

 $Var(4X + 5) = 4^2 Var(X) = 16 \times 4 = 64$

Continuous Random Variable:

If X is a random variable4 which can take all the values in an interval then X is called continuous random variable.

Properties of Probability Density Function:

The Probability density function of the random variable X denoted by f(x) has the following properties.

(i) $f(x) \ge 0$

OBSERVE OPTIMIZE OUTSPREAD

(ii) $\int_{-\infty}^{\infty} f(x) dx = 1$

Cumulative Distribution Function (CDF):

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Properties of CDF:

(i)
$$F(-\infty) = 0$$

(ii) $F(\infty) = 1$
(iii) $\frac{d}{dx}[F(x)] = f(x)$
(iv) $P(X \le a) = F(a)$
(v) $P(X > a) = 1 - F(a)$
(vi) $P(a \le X \le b) = F(b) - F(a)$
Problems on Continuous Random Variables:
1. A continuous random variable X has a density function $f(x) = \frac{K}{1+x^2}$, $-\infty \le X \le \infty$. Find the values of K.
Solution:
We know that $\int_{-\infty}^{\infty} f(x) dx = 1$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{K}{1+x^2} dx = 1$$

OBSERVE OPTIMIZE OUTSPREND

$$\Rightarrow K \int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 1$$

$$\Rightarrow K \int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 1$$

$$\Rightarrow K [tan^{-1}x]_{-\infty}^{\infty} = 1$$

$$\Rightarrow K [tan^{-1}\infty - tan^{-1}(-\infty)] = 1$$

$$\Rightarrow K\left[\frac{\pi}{2} + \frac{\pi}{2}\right] = 1$$
$$\Rightarrow K\left[\frac{2\pi}{2}\right] = 1$$
$$\Rightarrow K = \frac{1}{\pi}$$

2. If a random variable X has PDF $f(x) = \begin{cases} \frac{1}{4}, |x| < 2\\ 0, |x| > 2 \end{cases}$ Find (i) P[X < 1]

(ii)
$$P[|X| > 1]$$
 (*iii*) $P[2X + 3 > 5]$

Solution:

(i)
$$P[X < 1] = \int_{-2}^{1} f(x) dx$$

 $= \int_{-2}^{1} \frac{1}{4} dx$
 $= \frac{1}{4} [x]_{-2}^{1}$
 $= \frac{1}{4} [1 - (-2)]_{AM, KANYAKUMAN}^{AKUMAN}$
 $= \frac{3}{4}^{3}$
(ii) $P[|X| > 1] = 1 - P[-1 < X < 1] \ge 0$ OUTSPREAD
 $= 1 - \int_{-1}^{1} f(x) dx$
 $= 1 - \int_{-1}^{1} \frac{1}{4} dx$
 $= 1 - \frac{1}{4} [x]_{-1}^{1}$
 $= 1 - \frac{1}{4} [1 - (-1)]$

$$= 1 - \frac{2}{4}$$
$$= \frac{2}{4}$$

(iii)
$$P[2X+3>5] = P[2X>5-3]$$

 $= P[X>\frac{5-3}{2}]$
 $= P[X>\frac{2}{2}]$ NEER
 $= P[X>1]$
 $= \int_{1}^{2} f(x)dx$
 $= \int_{1}^{2} \frac{1}{4}dx$
 $= \frac{1}{4}[2-(1)] = \frac{1}{4}$

Mathematical expectation of continuous random variables

(i)
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

(ii)
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx_{RVE}$$
 OPTIMIZE OUTSPREN

(iii)
$$Var(X) = E(X^2) - E[(X)]^2$$

Problems:

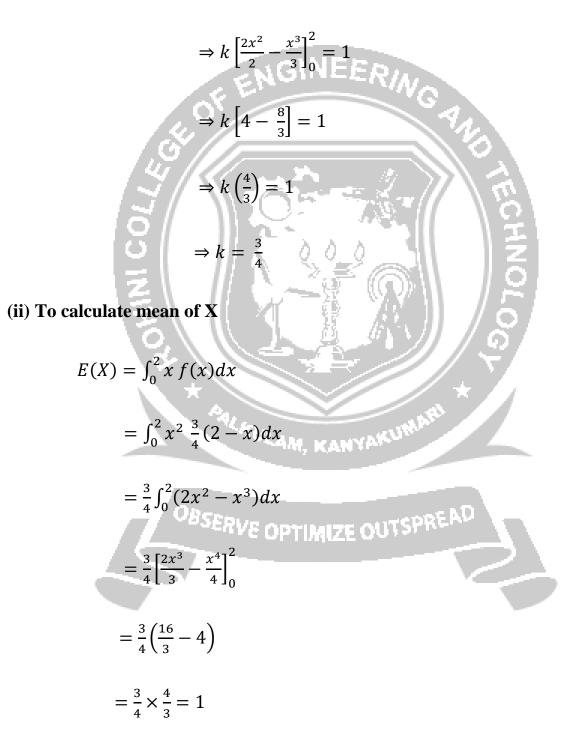
1. Let X be a continuous random variable with probability density function f(x) = kx(2 - x), 0 < x < 2. Find (i) k (ii) mean (iii) variance (iv) cumulative distribution function of X (v) rth moment.

ULAM KANYA

Solution:

(i) To find k

$$\int_{0}^{2} f(x)dx = 1 \Rightarrow k \int_{0}^{2} (2x - x^{2})dx = 1$$

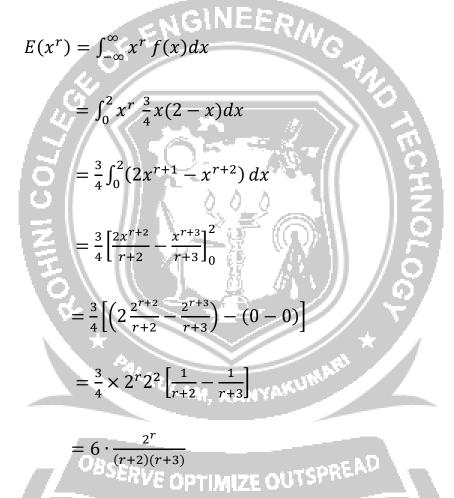


(iii) To calculate variance of X

$$=\frac{1}{4}(3x^2-x^3)$$

$$F(x) = \begin{cases} 0; & x < 0\\ \frac{1}{4}(3x^2 - x^3); & 0 \le x < 2\\ 1; & x \ge 2 \end{cases}$$

(v) To find the rth moment:

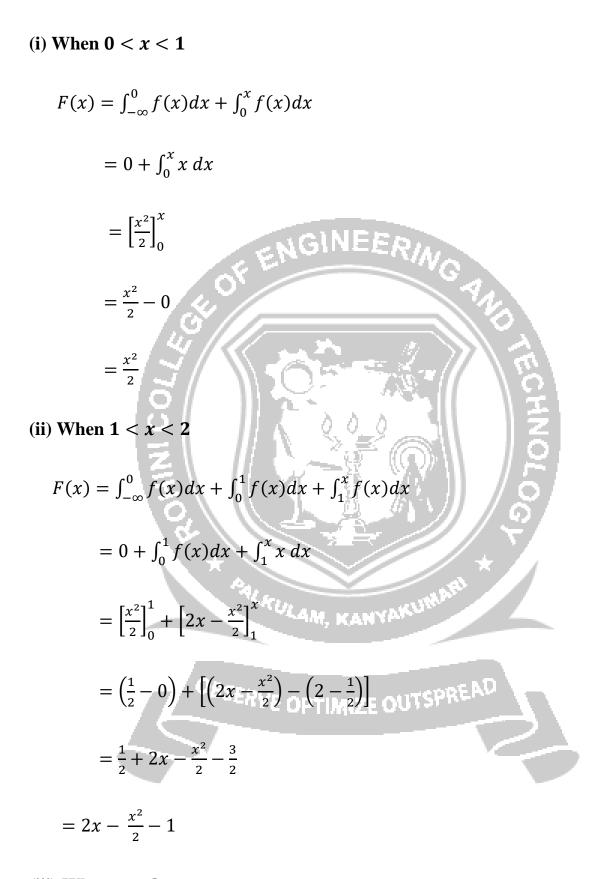


2. The probability distribution function of a random variable X is

$$f(x) = \begin{cases} x; & 0 < x < 1 \\ 2 - x; & 1 < x < 2 \text{ Find the cdf of X.} \\ 0; & x > 2 \end{cases}$$

Solution:

We know that c.d.f $F(x) = \int_{-\infty}^{x} f(x) dx$



(iii) When x > 2

$$F(x) = \int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx + \int_{2}^{x} f(x)dx$$

$$= 0 + \int_{0}^{1} f(x) dx + \int_{1}^{2} f(x) dx + \int_{2}^{x} x dx$$

$$= 0 + \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx + 0$$

$$= \left[\frac{x^{2}}{2}\right]_{0}^{1} + \left[2x - \frac{x^{2}}{2}\right]_{1}^{2}$$

$$= \left(\frac{1}{2} - 0\right) + \left[(4 - 2) - \left(2 - \frac{1}{2}\right)\right]^{EER}$$

$$= \frac{1}{2} + 2 - \frac{3}{2} = 1$$

$$F(x) = \begin{cases} \frac{x^{2}}{2}, & 0 < x < 1 \\ 2x - \frac{x^{2}}{2} - 1, & 1 < x < 2 \\ -1, & x > 2 \end{cases}$$

3. The Cumulative distribution function of a random variable X is given by

$$F(x) = \begin{cases} 0; & x < 0 \\ x^2; & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25}(3-x)^2; & \frac{1}{2} \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Find the pdf of X and evaluate $P(|X| \le 1)$ using both pdf and cdf.

Solution:

Given

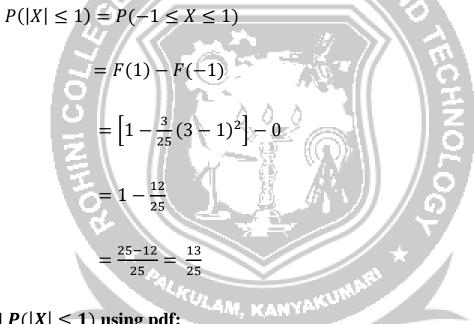
$$F(x) = \begin{cases} 0; & x < 0\\ x^2; & 0 \le x < \frac{1}{2}\\ 1 - \frac{3}{25}(3-x)^2; \frac{1}{2} \le x < 3\\ 1, & x \ge 3 \end{cases}$$

Pdf id $f(x) = \frac{d}{dx}[F(x)]$

$$f(x) = \begin{cases} 0; & x < 0\\ 2x; & 0 \le x < \frac{1}{2}\\ \frac{6}{25}(3-x); & \frac{1}{2} \le x < 3\\ 0, & x \ge 3 \end{cases}$$

GINEER

To find $P(|X| \le 1)$ using cdf:



To find $P(|X| \le 1)$ using pdf:

$$P(|X| \le 1) = P(\sum_{x \ge 1}^{1} \le X \le 1)$$

= $\int_{-1}^{1} f(x) dx$
= $\int_{-1}^{0} f(x) dx + \int_{0}^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^{1} f(x) dx$

$$= 0 + \int_{0}^{\frac{1}{2}} 2x \, dx + \int_{\frac{1}{2}}^{1} \frac{6}{25} (3-x) dx$$

$$= 2\left(\frac{x^2}{2}\right)_0^{\frac{1}{2}} + \frac{6}{25}\left[3x - \frac{x^2}{2}\right]_{\frac{1}{2}}^{1}$$

Moment Generating Function:

 $\frac{13}{25}$

The moment generating function (MGF) of a random variable "X" (about origin) whose probability function f(x) is given by $M_X(t) = E(e^{tx})$

$$= \begin{cases} \int_{-\infty}^{\infty} e^{tx} f(x) dx, \text{ for a continuous random variable} \\ \sum_{x=-\infty}^{\infty} e^{tx} p(x), \text{ for a discrete probability distribution} \end{cases}$$

Problems:

OBSERVE OPTIMIZE OUTSPREAD

1. If a random variable "X" has the MGF, $M_X(t) = \frac{2}{2-t}$, find the variance of X.

Solution:

Given $M_X(t) = \frac{2}{2-t} = 2(2-t)^{-1}$

$$M_X'(t) = -2(2-t)^{-2}(-1)$$

$$= 2(2 - t)^{-2}$$

$$M_{X}'(t = 0) = 2(2 - 0)^{-2} = \frac{2}{4} = \frac{1}{2}$$

$$M_{X}''(t) = -4(2 - t)^{-3}(-1)$$

$$= 4(2 - t)^{-3}$$

$$M_{X}''(t = 0) = 4(2 - 0)^{-3} = \frac{4}{8} = \frac{1}{2}$$

$$M_{X}''(t = 0) = 4(2 - 0)^{-3} = \frac{4}{8} = \frac{1}{2}$$

$$Var(X) = E(X^{2}) - E[(X)]^{2}$$

$$= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
Moments
The rth moment about origin is $\mu'_{1} = E[X'_{1}]$
First moment about origin $\mu'_{1} = E[X] = E(X^{2}) - [E(X)]^{2}$

$$Variance \sigma^{2} = \mu'_{2} - (\mu'_{1})^{2}$$

The rth moment about mean is $\mu_r = E[(X - \mu)^r]$, where μ is mean of X.

$$\Rightarrow \mu_1 = E[(X - \mu)^1]$$

$$= E[X] - E[\mu] = \mu - \mu = 0$$

$$\Rightarrow \mu_1 = 0$$

$$\Rightarrow \mu_2 = E[(X - \mu)^2]$$

$$= E[X^{2} + \mu^{2} - 2X\mu]$$

$$= E[X^{2}] + \mu^{2} - 2E[X]\mu$$

$$= E(X^{2}) + [E(X)]^{2} - 2E(X)E(X)$$

$$= E(X^{2}) + [E(X)]^{2} - 2[E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2} = \sigma^{2}$$

$$\mu_{2} = \sigma^{2}$$

1. If the probability density of X is given $f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & otherwise \end{cases}$ Find

LAM KANYA

its rth moment about origin. Hence find evaluate $E[(2X + 1)^2]$

Solution:

 \Rightarrow

The rth moment about origin is given by

$$\mu_{\rm r}' = E[x_{\rm r}'] = \int_0^1 x^r f(x) dx$$

$$= \int_0^1 x^r 2(1-x) dx$$

= $2 \int_0^1 (x^r - x^{r+1}) dx$

Oher

$$= 2 \left[\frac{x^{r+1}}{r+1} - \frac{x^{r+1+1}}{r+2} \right]_0^1$$

$$= 2\left[\frac{1}{r+1} - \frac{1}{r+2}\right]$$

$$= 2 \left[\frac{(r+2) - (r+1)}{(r+2)(r+1)} \right] = \frac{2}{r^2 + 3r + 2}$$

 $E[(2X+1)^2] = E[4X^2 + 4X + 1]$

$$= 4E[X^2] + 4E[X] + 1$$

 $=4\mu_{2}^{\prime}+4\mu_{1}^{\prime}+1$ NGI

 $=\frac{8}{12}+\frac{8}{6}+1=3$

 $=4\frac{2}{2^2+3(2)+2}+4\frac{2}{2^2+3(2)+2}+1$

 $\therefore E[(2X+1)^2] = 3$

Moment Generating Function (MGF)

Let X be a random variable. Then the MGF of X is $M_X(t) = E[e^{tx}]$

If X is a discrete random variable, then the MGF is given by

$$OBSERVEOPTINE CONTREM$$

If X is a continuous random variable, then the MGF is given by

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Define MGF and why it is called so?

Solution:

Let X be a random variable. Then the MGF of X is $M_x(t) = E[e^{tX}]$.

Let *X* be a continuous random variable. Then

$$M_{X}(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{-\infty}^{\infty} \left[1 + \frac{tx}{1!} + \frac{t^{2}x^{2}}{2!} + \cdots \frac{t^{r}x^{r}}{r!} + \cdots \right] f(x) dx$$

$$= \int_{-\infty}^{\infty} \left[f(x) + \frac{tx}{1!} f(x) + \frac{t^{2}x^{2}}{2!} f(x) + \cdots \frac{t^{r}x^{r}}{r!} f(x) + \cdots \right] dx$$

$$= \int_{-\infty}^{\infty} f(x) dx + \frac{t}{1!} \int_{-\infty}^{\infty} xf(x) dx + \frac{t^{2}}{2!} \int_{-\infty}^{\infty} x^{2}f(x) dx \dots + \frac{t^{r}}{r!} \int_{-\infty}^{\infty} x^{r}f(x) dx + M_{X}(t) = 1 + \frac{t}{1!} \mu_{1}' + \frac{t^{2}}{2!} \mu_{2}' + \cdots \frac{t^{r}}{r!} \mu_{r}' + \cdots \dots$$

...

 $: M_X(t)$ generates moments therefore it is moment generation function

Note:

If X is a discrete RV and if $M_X(t)$ is known, then $\mu'_r = \left[\frac{d^r}{dt^r}[M_X(t)]\right]_{t=0}$

If X is a continuous RV and if $M_X(t)$ is known, then μ'_r

 $= r! \times \operatorname{coeff} \operatorname{of} t^r \operatorname{in} M_X(t)$

Problems under MGF of discrete random variable

$$M_X(t) = \sum_x e^{tx} p(x)$$

If X is a discrete RV and if $M_X(t)$ is known, then $\mu'_r = \left[\frac{d^r}{dt^r}[M_X(t)]\right]_{t=0}$

1. Let *X* be the number occur when a die is thrown. Find the MGF mean and variance of X.

CINERS

Solution:

$$\begin{bmatrix} x & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p(x) & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ \hline (i) M_X(t) &= \sum_{x=1}^6 e^{tx} p(x) \end{bmatrix}$$

 $= e^{t}P(1) + e^{2t}P(2) + e^{3t}P(3) + e^{4t}P(4) + e^{5t}P(5) + e^{6t}P(6)$ $= e^{t}\frac{1}{6} + e^{2t}\frac{1}{6} + e^{3t}\frac{1}{6} + e^{4t}\frac{1}{6} + e^{5t}\frac{1}{6} + e^{6t}\frac{1}{6}$

$$M_X(t) = \frac{1}{6} [e^t + e^{2t} + e^{3t} + e^{4t} + e^{5t} + e^{6t}]$$

(ii)
$$E(X) = \left[\frac{d}{dt}M_X(t)\right]_{t=0} = \frac{1}{6}\left[e^t + 2e^{2t} + 3e^{3t} + 4e^{4t} + 5e^{5t} + 6e^{6t}\right]_{t=0}$$

 $O_{BS} = \frac{1}{6} [1 + 2 + 3 + 4 + 5 + 6] = \frac{21}{6}$ $\Rightarrow E(X) = 3.5$

$$E(X^2) = \left[\frac{d^2}{dt^2}[M_X(t)]\right]_{t=0}$$
$$= \frac{1}{6}[e^t + 4e^{2t} + 9e^{3t} + 16e^{4t} + 25e^{5t} + 36e^{6t}]$$

$$=\frac{1}{6}(1+4+9+16+25+36)=\frac{91}{6}$$

$$= 15.1$$

(iii) Variance of $X = E(X^2) - [E(X)]^2 = 15.1 - 12.25$

 $\sigma_X = 2.85$

2. Find the moment generating function for the distribution

where
$$(X = x) = \begin{cases} \frac{2}{3}; x = 1 \\ \frac{1}{3}; x = 2 . Also find its mean & variance, 0; otherwise \end{cases}$$

Solution:

The probability distribution of X is given by

x	Y I	2
<i>p</i> (<i>x</i>)	2/31	1/3

 $\Rightarrow M_X(t) = E[e^{tx}] = \sum_{x=1}^2 e^{tx} p(x)$

$$= e^{t}p(X=1) + e^{2t}p(X=2) = e^{t}\frac{2}{3} + e^{2t}\frac{1}{3}$$

$$\Rightarrow M_X(t) = \frac{1}{3}(2e^t + e^{2t})$$

 $\Rightarrow E(X) = M'_X(0)$

$$= \left[\frac{d}{dt} \left[\frac{1}{3} \left(2e^t + e^{2t}\right)\right]\right]_{t=0}$$

$$=\frac{1}{3}(2e^{t}+2e^{2t})$$

 $\Rightarrow E(X) = \frac{4}{3}$

$$\Rightarrow E(X^{2}) = M_{X}''(0) = \left[\frac{d^{2}}{dt^{2}}\left[\frac{1}{3}(2e^{t} + e^{2t})\right]\right]_{t=0}$$
$$= \left[\frac{d}{dt}\left[\frac{1}{3}(2e^{t} + 2e^{2t})\right]_{t=0}$$

$$= \left[\frac{1}{3}(2e^{t} + 4e^{2t})_{t=0}\right] = \frac{6}{3} = 2$$

Variance of
$$X = E(X^2) - [E(X)]^2 = 2 - \left(\frac{4}{3}\right)^2$$

$$\Rightarrow \operatorname{Var}(X) = \frac{2}{9}$$

3. Let X be a RV with PMF $P(x) = \left(\frac{1}{2}\right)^x$; $x = 1, 2, 3, \dots$ Find MGF and hence

find mean and variance of X. KULAM, KANYAK^{UT}

Solution:

(i)
$$M_X(t) = E[e^{tX}]^{OBSERVE}$$
 OPTIMIZE OUTSPREN

$$= \sum_{x=1}^{\infty} e^{tx} p(x)$$

$$=\sum_{x=1}^{\infty}e^{tx}\left(\frac{1}{2}\right)^{x}$$

$$=\sum_{x=1}^{\infty}\left(\frac{e^t}{2}\right)^x$$

$$= \left[\frac{e^{t}}{2} + \left(\frac{e^{t}}{2}\right)^{2} + \left(\frac{e^{t}}{2}\right)^{3} + \cdots\right]$$

$$= \frac{e^{t}}{2} \left(1 + \frac{e^{t}}{2} + \left(\frac{e^{t}}{2}\right)^{2} + \cdots\right)$$

$$= \frac{e^{t}}{2} \left(1 - \frac{e^{t}}{2}\right)^{-1}$$

$$= \frac{e^{t}}{2 - e^{t}}$$

$$(i) E(X) = \left[\frac{d}{dt}[M_{X}(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt}\left(\frac{e^{t}}{2 - e^{t}}\right)\right]_{t=0}$$

$$= \left[\frac{(2 - e^{t})e^{t} - e^{t}(0 - e^{t})}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{(2 - e^{t})e^{t} - e^{t}(0 - e^{t})}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{2e^{t} - e^{2t} + e^{2t}}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{2e^{t} - e^{2t} + e^{2t}}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{2e^{t} - e^{2t} + e^{2t}}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{2e^{t}}{(2 - e^{t})^{2}}\right]_{t=0}$$

$$= \left[\frac{2e^{t}}{(2 - e^{t})^{2}}\right]_{t=0}$$

 $\Rightarrow E(X) = 2$

$$E(X^2) = \left[\frac{d^2}{dt^2}[M_X(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt} \left(\frac{2e^t}{(2-e^t)^2}\right)\right]_{t=0}$$

$$= \left[\frac{\left(2-e^{t}\right)^{2} 2e^{t} - 2e^{t} 2\left(2-e^{t}\right)\left(-e^{t}\right)}{\left(2-e^{t}\right)^{4}} \right]_{t=0} = \frac{2+4}{1} = 6$$

(iii) Variance $= E(X^2) - [E(X)]^2 = 6 - 4$

$$Var(X) = 2$$

Problems under MGF of discrete random variable

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

If X is a continuous RV and if $M_X(t)$ is known, then μ'_r

$$= r! \times \operatorname{coeff} \operatorname{of} t^r \operatorname{in} M_X(t)$$

1. If a random variable "X" has the MGF, $M_X(t) = \frac{2}{2-t}$, find the variance of X.

TULAM, KANYAKU

Solution:

Given
$$M_X(t) = \frac{2}{2-t} = 2(2-t)^{-1}$$

 $M_X'(t) = -2(2-t)^{-2}(-1)$
 $= 2(2-t)^{-2}$

$$M_X'(t=0) = 2(2-0)^{-2} = \frac{2}{4} = \frac{1}{2}$$

$$M_X''(t) = -4(2-t)^{-3}(-1)$$

$$=4(2-t)^{-3}$$

$$M_X''(t=0) = 4(2-0)^{-3} = \frac{4}{8} = \frac{1}{2}$$

$$Var(X) = E(X^{2}) - E[(X)]^{2}$$

 $=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$

2. Let X be a RV with PDF $f(x) = ke^{-2x}$, $x \ge 0$. Find (i) k, (ii) MGF, (iii) Mean

NGINEERI

and (iv) variance

Solution:

Given
$$f(x) = ke^{-2x}$$
; $0 \le x \le x$

- (i) To find k
- $\Rightarrow \int_0^\infty f(x) dx = 1$

$$\Rightarrow \int_0^\infty k e^{-2x} dx = 1$$

 ∞

$$\Rightarrow k \left[\frac{e^{-2x}}{-2} \right]_{0}^{\infty} = 1$$

$$OBSERVE OPTIMIZE OUTSPREAD$$

$$\Rightarrow \frac{k}{-2}(e^{-\infty} - 1) = 1$$

$$\Rightarrow \frac{k}{-2}(0-1) = 1$$

$$\Rightarrow \frac{k}{2} = 1$$

$$\Rightarrow k = 2$$

(ii) $M_X(t) = E[e^{tx}]$

$$= \int_0^{\infty} e^{tx} f(x) dx$$

$$= 2\int_0^{\infty} e^{tx} e^{-2x} dx = 2\int_0^{\infty} e^{tx-2x} dx$$

$$= 2\int_0^{\infty} e^{-(2-t)x} dx = 2\left[\frac{e^{-(2-t)x}}{-(2-t)}\right]_0^{\infty} = 2\left(0 + \frac{1}{2-t}\right)$$

(iii) To find Mean and Variance
 $M_X(t) = \frac{2}{2-t}$
(iii) To find Mean and Variance
 $M_X(t) = \frac{2}{2\left(1 - \frac{t}{2}\right)} = \left(1 + \frac{t}{2}\right)^{-1} = 1 + \frac{t}{2} + \frac{t^2}{2^2} + \cdots$
Coefficient of $t = \frac{1}{2}$ Coefficient of $t^2 = \frac{1}{2^2}$
Mean $E(X) = \mu'_1 = 1! \times \text{coefficient of } t \Rightarrow E(X) = \frac{1}{2}$
 $E(X^2) = 2! \times \text{coefficient of } t^2 = 2 \times \frac{1}{2^2} = \frac{1}{2}$
(iv) Variance $= E(X^2) - [E(X)]^2 = \frac{1}{2} - \frac{1}{4} = \frac{2-1}{4}$
 $Var(X) = \frac{1}{4}$

3. Let X be a continuous RV with PDF $f(x) = Ae^{\frac{-x}{3}}$; $x \ge 0$. Find (i) A, (ii) MGF,(iii) Mean and (iv) variance

Solution:

Given
$$f(x) = Ae^{\frac{-x}{3}}$$
; $0 \le x \le \infty$

(i) To find A

 $\Rightarrow \int_0^\infty f(x) dx = 1$

$$\Rightarrow \int_{0}^{\infty} Ae^{\frac{-x}{3}} dx = 1$$

$$\Rightarrow A\left[\frac{e^{\frac{-x}{3}}}{\frac{1}{3}}\right]_{0}^{\infty} = 1$$

$$\Rightarrow -3A(0-1) = 1$$

$$\Rightarrow 3A = 1 \Rightarrow A = \frac{1}{3}$$

$$\therefore f(x) = \frac{1}{3}e^{\frac{-x}{3}}; 0 \le x \le \infty$$
(ii) $M_{X}(t) = E[e^{tx}] = \int_{0}^{\infty} e^{tx}f(x)dx = \frac{1}{3}\int_{0}^{\infty} e^{tx}e^{\frac{-x}{3}}dx$

$$= \frac{1}{3} \int_{0}^{\infty} e^{tx - \frac{x}{3}} dx = \frac{1}{3} \int_{0}^{\infty} e^{-\left(\frac{1}{3} - t\right)x} dx = \frac{1}{3} \left[\frac{e^{-\left(\frac{1}{3} - t\right)x}}{-\left(\frac{1}{3} + t\right)} \right]_{0}^{\infty}$$
$$= \frac{1}{3} \left[0 + \frac{1}{\frac{1}{3} - t} \right] = \frac{1}{3} \frac{1}{\frac{1 - 3t}{3}}$$

$$=(1-3t)^{-1}$$

(iii) To find mean and variance:

$$M_X(t) = (1 - 3t)^{-1}$$

$$= 1 + 3t + 9t^2 + 27t^3 + \cdots$$

coefficient of t = 3

coefficient of $t^2 = 9$

E(X) = 1! X coefficient of t in $M_X(t) = 1 X 3$

Mean = 3

E(X) = 2! X coefficient of t^2 in $M_X(t)$

$$= 2 \times 9 = 18$$

(iv)Variance =
$$E(X^2) - [E(X)]^2 = 18$$

Var(X) = 9

4. Let X be a continuous random variable with the pdf

$$f(x) = \begin{cases} x & ; 0 < x < 1 \\ 2 - x & ; 1 < x < 2 . \text{ Find (i) MGF, (ii) Mean and variance.} \\ 0 & ; \text{ elsewhere} \end{cases}$$

Solution:

^{BSERVE} OPTIMIZE OUTSPR^E

Since X is defined in the region 0 < x < 2, X is a continuous RV.

$$M_X(t) = E[e^{tX}] = \int_0^2 e^{tx} f(x) dx$$
$$= \int_0^1 e^{tx} x dx + \int_1^2 e^{tx} (2-x) dx$$

$$= \int_{0}^{1} x e^{tx} dx + \int_{1}^{2} (2 - x) e^{tx} dx$$

$$= \left[x \left(\frac{e^{tx}}{t} \right) - 1 \left(\frac{e^{tx}}{t^{2}} \right) \right]_{0}^{1} + \left[(2 - x) \frac{e^{tx}}{t} - (-1) \frac{e^{tx}}{t^{2}} \right]_{1}^{2}$$

$$= \left[1 \left(\frac{e^{t}}{t} \right) - 1 \left(\frac{e^{t}}{t^{2}} \right) - \left(\frac{-1}{t^{2}} \right) \right] + \left[0 + \frac{e^{2t}}{t^{2}} - \frac{e^{t}}{t} - \frac{e^{t}}{t^{2}} \right]$$

$$= \left[\frac{e^{t}}{t} - \frac{e^{t}}{t^{2}} + \frac{1}{t^{2}} + \frac{e^{2t}}{t^{2}} - \frac{e^{t}}{t} - \frac{e^{t}}{t^{2}} \right] = \frac{1}{t^{2}} - \frac{2e^{t}}{t^{2}} + \frac{e^{2t}}{t^{2}}$$

$$M_{X}(t) = \frac{1 - 2e^{t} + e^{2t}}{t^{2}}$$

To find Mean and Variance:

$$M_X(t) = \frac{1}{t^2} \left[1 - 2\left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots \right) + \left(1 + \frac{2t}{1!} + \frac{2^2t^2}{2!} + \frac{2^3t^3}{3!} + \frac{2^4t^4}{4!} + \cdots \right) \right]$$

$$\mu'_r = r! \times \text{coefficient of } t^r$$

M, KANYAKU Coefficient of $t = -\frac{2}{3!} + \frac{2^3}{31} = \frac{-2}{6} + \frac{8}{6} = 1$ **OBSERVE OPTIMIZE OUTSPREND** Coefficient of $t^2 = -\frac{2}{4!} + \frac{2^4}{4!} = \frac{14}{24} = \frac{7}{12}$ $\mu'_1 = 1! \times \text{coefficient of } t$

 $\mu_1' = 1$

Mean = 1

$$\mu'_{2} = 2! \times \text{coefficient of } t^{2}; \mu'_{2} = 2 \times \frac{7}{12} = \frac{7}{6}$$

Variance = $\mu'_2 - (\mu'_1)^2 = \frac{7}{6} - 1 = \frac{1}{6}$

5. Let X be a continuous random variable with PDF $f(x)\frac{1}{2a}$; -a < x < a. Then

find the M.G.F of X.

Solution:

Let X is a continuous random variable defined in -a < x < a.

$$M_{x}(t) = E[e^{tx}]$$

$$= \int_{-a}^{a} e^{tx} f(x) dx$$

$$= \int_{-a}^{a} e^{tx} \frac{1}{2a} dx^{+}$$

$$= \frac{1}{2a} \left(\frac{e^{tx}}{t}\right)^{a} e^{x} - e^{-x} = 2\sin hx$$

$$= \frac{1}{2a} \left(\frac{e^{ta} - e^{-ta}}{t}\right)$$

$$= \frac{1}{2a} \frac{2\sinh at}{t}$$

 $M_X(t) = \frac{\sinh at}{at}$