QUADRATIC PROBING

• Probing is the process of getting next available hash table array cell.

AGINEED.

• In linear probing, F(i) is a linear function of i. That means alternative locations are searched in a sequential manner. Thus,

 $F(i) = i^2$

Example:

Insert the keys {89, 18, 49, 58, 69} into the hash table.

			ENC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NAN	
	Empty		10 10	A C	A.C. 50	A G
	Table	After 89	After 18	After 49	After 58	After 69
0				/0	10	10
0				47		49
1		₹/ \	107	2.1		∖'è l
2		5	11.0	00	58	58
3			\mathbb{N}^{2}	t f (<u>341</u>	69
4						0
5		59				ر رو
6		*			*	
7		\$P.	u.kin		INAFI	
8	1		18	18	18	18
9		89	89	89	- 89	89

Hash (89) =89 mod 10 = 9 (No collision)

Hash $(18) = 18 \mod 10 = 8$ (No collision)

Hash (49) =49 mod 10 = 9 (Collision Occurred) $h_i (49) = (Hash (49) + F(1)) \mod 10$ $F(1)=1^2$ $= (9 + 1) \mod 10 = 10 \mod 10 = 0$ (No collision)

Hash (58) = 58 mod 10 = 8 (Collision Occurred)

$$h_i (58) = (Hash (58) + F(1)) \mod 10$$
 $F(1) = 1^2$
 $= (9 + 1) \mod 10 = 10 \mod 10 = 0$ (Collision Occurred)
 $h_i (58) = (Hash (58) + F(2)) \mod 10$ $F(2) = 2^2 = 4$
 $= (8 + 4) \mod 10 = 12 \mod 10 = 2$ (No Collision)

Hash (69) = 69 mod 10 = 9 (Collision Occurred)

$$h_i (69) = (Hash (69) + F(1)) \mod 10$$
 $F(1)=1^2$
 $= (9 + 1) \mod 10 = 10 \mod 10 = 0$ (Collision Occurred)
 $h_i (69) = (Hash (69) + F(2)) \mod 10$ $F(2)=2^2 = 4$

 $= (9 + 4) \mod 10 = 13 \mod 10 = 3$ (No Collision)

