
NETWORK GRAPH 

In order to describe the geometrical structure of the network, it is sufficient to 

replace the different power system components (of the corresponding power system 

network) such as generators, transformers and transmission lines etc. by a single line 

element irrespective of the characteristics of the power system components. 

The geometrical interconnection of these line elements (of the corresponding 

power system network) is known as a graph (rather linear graph as the graph means 

always a linear graph). Each source and the shunt admittance across it are taken as a 

single element. The terminals of the elements are called the nodes. 

A graph is connected if, and only if, there exists a path between every pair of 

nodes. A single edge or a single node is a connected graph. If every edge of the graph is 

assigned a direction, the graph is termed as an oriented graph. The direction is 

generally, so assigned as to coincide with the assumed positive direction of the current 

in the element. 

Power networks are so structured that out of the m total nodes, one node 

(normally described by 0) is always at ground potential and the remaining n = (m – 1) 

nodes are the buses at which the source power is injected. Figure 6.5 shows the 

oriented graph of the network given in Fig. 6.2 (b). 

 

 

A connected sub-graph containing all the nodes of the original graph but no 

closed path is called a tree. The tree branches form a sub-set of the elements of the 

connected graph. The number of branches b required to form a tree is equal to the 

number of buses in the network (the total number of nodes, including the reference 

node, is one more than the number of buses), i.e., 

b = m – 1 = n (number of buses)                                              …(6.12) 
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The elements of the original graph not included in the tree, form a sub-graph 

which may not necessarily be connected, is known as cotree. The cotree is a 

complement of a tree. The elements of a cotree are called the links. 

The number of links I of a connected graph with e elements is given as –   

 

i.e., number of links equals number of elements less the number of tree branches. 

A tree and the corresponding cotree of graph shown in Fig. 6.5 are shown in Figs. 6.6 (a) 

and 6.6 (b) respectively.  

 

If a link is added to the tree, the corresponding graph contains one closed path 

called a loop. Thus a graph has as many loops as the number of links. 

The above system has 9 branches. So it has 18 variables (9 branch voltages and 9 

branch currents). However, it can be easily seen that all these 18 variables are not 

independent. The number of independent variables is found from the concept of the 

tree. 

The number of tree branches gives the number of independent voltages. For any 

system the number of tree branches is equal to the number of buses. The number of 

links gives the number of independent current variables. 

BUS INCIDENCE MATRIX 

If “G” is a graph with “n” nodes and “e” elements, then the matrix A̅ whose n rows 

correspond to the “n” nodes (i.e., vertices) and “e” columns correspond to the “e” 

elements, i.e., edges, is known as an incidence matrix. 

The matrix elements are: 

aik = 1 if ith element is incident to and directed away from the kth node (bus). 

https://www.engineeringenotes.com/wp-content/uploads/2017/08/clip_image006-20.jpg
https://www.engineeringenotes.com/wp-content/uploads/2017/08/clip_image007-15.jpg


= – 1 if the ith element is incident to but directed towards the kth node 

= 0 if the ith element is not incident to the kth node. 

The dimension of this matrix is n x e and its rank is less than n. 

Any node of the connected graph can be selected as the reference node and then 

the variables of the remaining n – 1 node which are termed as buses can be measured 

with respect to this assigned reference node. 

The matrix “A” obtained from the incidence matrix A̅ by deleting the reference 

row (corresponding to the reference node) is termed as reduced or bus incidence 

matrix (the number of buses in the connected graph is equal to n – 1 where n is the 

number of nodes). The order of this matrix is (n –  1) x e and its rows are linearly 

independent with rank equal to (n – 1). 

For the specific system shown in Fig. 6.5, the 9-branch voltages (Vb1, Vb2, Vb3, … 

Vb9) can be expressed in terms of 4-bus voltages (V1 …. V4) as below: 

 

Equation (6.19) can be written in matrix form as – 

V = A Vbus                                                          …(6.20) 

Where the bus incidence matrix A is –   

 

This matrix is rectangular and, therefore, singular. Its elements aik are found as 

per rules given above. 
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PRIMITIVE NETWORK: 

A network is constituted by many branches and each branch consists of active 

and/or passive elements. Fig. 6.1(a) and 6.1(b) show a network branch, containing both 

active and passive elements in impedance and admittance representation. The 

impedance is a voltage source Ers in series with and impedance, zrs; while in admittance 

form there is a current source jrs in parallel with an admittance yrs. The element current 

is Irs and element voltage, Vrs= Vr – Vs where Vr and Vs are the voltages of the element 

nodes r and s, respectively. 

 

The noteworthy point is that for steady state ac performance, all element 

variables (Vrs, Vr, Vs, Irs, Jrs) are phasors and element parameters zrs and yrs are complex 

numbers. 

The performance equation for impedance representation, depicted in Fig. 6.7(a), 

can be written as – 

Vrs + Ers = zrs Irs                                                            … (6.14) 

And for admittance representation depicted in Fig. 6.1(b) – 

Irs + Jrs = yrs Vrs                                                           … (6.15) 

The two representations shown in Figs. 6.7(a) and 6.7(b) are equivalent wherein 

the parallel source current in admittance form is related to the series voltage in 

impedance form by – 

 

  

A set of unconnected elements is known as primitive network. The performance 

equations in admittance (or impedance) form can be written for all branches. 

The set of these equations in impedance form is –   
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V + E = ZI                                                                       …(6.17) 

And in admittance form I + J = YV                      …(6.18) 

where V and E are branch voltage and source voltage matrices, I and J are branch 

current and source current matrices, Z is primitive impedance matrix (i.e., a matrix 

whose elements are branch self-impedances) and Y is primitive admittance matrix (i.e., 

matrix whose elements are branch self-admittances). These are related as Z = 1/Y. If 

there is no coupling between elements, Z and Y are diagonal matrices. 

Bus admittance matrix  

 

Formulation of Ybus and Zbus: 

Substituting Eq. (6.20) into Eq. (6.18), we have –  

I + J = Y A Vbus                                                    … (6.22)  

Premultiplying Eq. (6.22) by AT (i.e., transpose of the bus incidence matrix) we 

have – 

AT I + AT J = AT Y A Vbus                                  … (6.23) 

Each component of the n-dimensional vector AT I is the algebraic sum of the 

element currents leaving the nodes 1, 2, 3, …, n. 

Therefore, as per Kirchhoffs’ current law – 

AT I = 0                                                                   … (6.24) 

Similarly, each component of vector AT J can be recognized as the algebraic sum 

of all source currents injected into nodes 1, 2, … n. These components are therefore the 

bus currents. 

Hence we can write – 

AT J = Jbus                                                          … (6.25) 

Equation (6.23) is then simplified to – 

Jbus = AT Y A Vbus                                           …(6.26) 

Comparing Eqs. (6.26) and (6.25), we have – 

Ybus = AT Y A                                                     …(6.27) 

Above Eq. (6.27) suggests the formulation of Ybus. Since matrix A is singular, 

AT YA is a singular transformation of Y. The bus incidence matrix can be obtained 

through a computer programme. Standard matrix multiplication and matrix transpose 

sub-routines can be employed to compute Ybus using Eq. (6.27). Zbus is the inverse of Ybus. 


