Binomial Distribution

Let us consider " n " independent trails. If the successes (S) and failures (F) are recorded successively as the trials are repeated we get a result of the type

SSFFS...FS

Let " x " be the number of success and hence we have $(n-x)$ number of failures.

$$
P(S S F F S \ldots F S)=P(S) P(S) P(F) P(F) P(S) \ldots P(F) P(S)
$$

$$
\begin{aligned}
& =p p q q p \ldots q p \\
& =p p \ldots p \times q q q \ldots q \\
& =x \text { factor } \times(n-x) \text { factors } \\
& =p^{x} \cdot q^{n-x}
\end{aligned}
$$

But " x " success in " n " trials can occur in $n C_{x}$ ways.

Therefore the probability of " x " successes in " n " trials is given by

$$
P(X=x \text { successes })=n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n
$$

Where $p+q=1$

Assumptions in Binomial Distribution:

(i) There are only two possible outcomes for each trial (success or failure)
(ii) The probability of a success is the same for each trail.
(iii) There are " n " trials where " n " is constant.
(iv) The " n " trails are independent.

Mean and variance of a Binomial Distribution:

$$
\begin{equation*}
\operatorname{Mean}(\mu)=n p \tag{i}
\end{equation*}
$$

(ii)

$$
\operatorname{Variance}\left(\sigma^{2}\right)=n p q
$$

The variance of a Binomial Variable is always less than its mean.
$\therefore n p q<n p$.

Find the moment generating function of binomial distribution and hence

find the mean and variance.

Solution:

Binomial distribution is $p(x)=n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots \ldots, n$

To find Mean and Variance:

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right)=\sum_{x=0}^{n} e^{t x} P(x) \\
& =\sum_{x=0}^{n} e^{t x} n C_{x} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n} n C_{x}\left(p e^{t}\right)^{x} q^{n-x} \quad \because \sum_{x=0}^{n} n C_{x} a^{x} b^{n-x}=(a+b)^{n}
\end{aligned}
$$

$M_{X}(t)=\left(p e^{t}+q\right)^{n}$
$\operatorname{Mean} E(X)=\left[\frac{d}{d t}\left[M_{*}(t)\right]\right]_{t=0}$

$$
\begin{aligned}
& =\left[\frac{d}{d t}\left[\left(p e^{t}+q\right)^{n}\right]\right]_{t=0} \\
& =\left[n\left(p e^{t}+q\right)^{n-1}\left(p e^{t}+0\right)\right]_{t=0} \\
& =n p[p+q]^{n-1} \\
E(X)= & n p \\
E\left(X^{2}\right)= & {\left[\frac{d^{2}}{d t^{2}}\left[M_{X}(t)\right]\right]_{t=0} } \\
= & {\left[\frac{d}{d t}\left[n\left(p e^{t}+q\right)^{n-1}\left(p e^{t}\right)\right]\right]_{t=0} } \\
= & n p\left[\frac{d}{d t}\left[\left(p e^{t}+q\right)^{(n-1)} e^{t}\right]\right]_{t=0} \\
= & n p\left[\left(p e^{t}+q\right)^{n-1} e^{t}+e^{t}(n-1)\left(p e^{t}+q\right)^{n-2} p e^{t}\right]_{t=0} \\
= & n p[q+n p] \\
= & n p\left[1+(p+q)^{n-1}+(n-1)(p p+q)^{n-2} p\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
E\left(X^{2}\right)=(n p)^{2}+n p q \\
\text { Variance }
\end{array} \\
& =E\left(X^{2}\right)-[E(X)]^{2} \\
& \\
& =(n p)^{2}+n p q-(n p)^{2} \\
& \\
& =n^{2} p^{2}-n^{2} p^{2}+n p q
\end{aligned}
$$

Variance $=n p q$

Problems based on Binomial Distribution:

$$
\begin{gathered}
\text { Mean }=\boldsymbol{n p} \\
\text { Variance }=\boldsymbol{n p q}
\end{gathered}
$$

1. Criticize the following statements "The mean of a binomial distribution is 5 and the standard deviation is $3 "$

Solution:

Given mean $=n p=5$
Standard deviation $=\sqrt{n p q}=3$
\Rightarrow Variance $=n p q=9$

$$
\begin{equation*}
\frac{(2)}{(1)} \Rightarrow \frac{n p q}{n p}=\frac{9}{5}=1.8>1 \tag{2}
\end{equation*}
$$

Which is impossible. Hence, the given statement is wrong.
2. If $M_{X}(t)=\frac{\left(2 e^{t}+1\right)^{4}}{81}$, then find Mean and Variance.

Solution:

Given $M_{X}(t)=\frac{\left(2 e^{t}+1\right)^{4}}{81}$
$\Rightarrow M_{X}(t)=\left(\frac{2}{3} e^{t}+\frac{1}{3}\right)^{4}$
Comparing with MGF of Binomial Distribution, $M_{X}(t)=\left(p e^{t}+q\right)^{n}$, we get $p=\frac{2}{3}$ and $=\frac{1}{3}, \mathrm{n}=4$
(i) Mean $=n p=4 \times \frac{2}{3}=\frac{8}{3}$
(ii) Variance $=n p q=\frac{8}{3} \times \frac{1}{3}=\frac{8}{9}$
3. Six dice are thrown 729 times. How many times do you expect atleast 3 dice to show a five or six.

Solution:

Given $n=6$ and $N=729$

Probability of getting (5 or 6) $p=\frac{2}{6}=\frac{1}{3}$
and $q=1-\frac{1}{3}=\frac{2}{3}$

$$
\begin{aligned}
P(X=x) & =n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n \\
& =6 C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x}, x=0,1,2, \ldots, 6
\end{aligned}
$$

$\mathrm{P}($ atleast 3 dice to show a five or six $)=P(X \geq 3)=1-P(X<3)$

$$
\begin{aligned}
& =1-[P(X=0)+P(X=1)+P(X=2)] \\
& =1-\left[6 C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{6-0}+6 C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{6-1}+6 C_{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{6-2}\right] \\
& =1-[0.0877+0.2634+0.3292] \\
& =1-0.6803
\end{aligned}
$$

$$
=0.3197
$$

Number of times expecting atleast 3 dice to show 5 or $6=729 \times 0.3197$

$$
=233 \text { times }
$$

4. A machine manufacturing screw is known to produce 5% defective. In a random sample of $\mathbf{1 5}$ screws, what is the probability that there are (i) exactly $\mathbf{3}$ defectives (ii) not more than $\mathbf{3}$ defectives.

Solution:

Given $n=15$

$$
\begin{aligned}
& p=5 \%=0.05 \\
& q=1-p=1-0.05=0.95 \\
& \begin{aligned}
P(X=x) & =n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n \\
& =15 C_{x}(0.05)^{x}(0.95)^{15-x}, x=0,1,2, \ldots, 15
\end{aligned}
\end{aligned}
$$

(i) $\mathrm{P}($ exactly 3 defectives $)=P(X=3)$

$$
\begin{aligned}
& =15 C_{3}(0.05)^{3}(0.95)^{15-3} \\
& =0.056(0.95)^{12} \\
& =0.0307
\end{aligned}
$$

(ii) P (no kore than 3 defectives $)=P(X \leq 3)$

$$
\begin{gathered}
=P(X=0)+P(X=1)+P(X=2)+P(X=3) \\
=15 C_{0}(0.05)^{0}(0.95)^{15-0}+15 C_{1}(0.05)^{1}(0.95)^{15-1} \\
+15 C_{3}(0.05)^{2}(0.95)^{15-2} \\
+15 C_{3}(0.05)^{3}(0.95)^{15-3}
\end{gathered}
$$

$$
\begin{aligned}
& =15 C_{0}(0.05)^{0}(0.95)^{15}+15 C_{1}(0.05)^{1}(0.95)^{14}+15 C_{3}(0.05)^{2}(0.95)^{13} \\
& \qquad \quad+15 C_{3}(0.05)^{3}(0.95)^{12} \\
& =0.4633+0.3658+0.1348+0.0307 \\
& =0.9946
\end{aligned}
$$

Poisson Distribution

Poisson Distribution is a limiting case of Binomial Distribution under the following assumptions.
(i) The number of trails " n " should be independently large. i.e., $n \rightarrow \infty$
(ii) The probability of successes " p " for each trail is indefinitely small.
(iii) $n p=\lambda$ should be finite where λ is a constant.

Application of Poisson Distribution:

Determining the number of calls received per minute at a call Centre or the number of unbaked cookies in a batch at a bakery, and much more.

Find the MGF for Poisson distribution and hence find the mean and

 variance. OBSERVE OPTMITE OUTSPREADSolution:

Poisson distribution is $p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} x=0,1,2, \ldots \ldots$,

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t x}\right] \\
& =\sum_{x=0}^{\infty} e^{t x} p(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=0}^{\infty} e^{-x} e^{-\lambda} \frac{\lambda^{x}}{x!}=\sum_{x=0}^{\infty} \frac{\left(e^{t}\right)}{0} \\
& =e^{-\lambda}\left[1+\frac{\lambda e^{t}}{1!}+\frac{\left(\lambda e^{t}\right)^{2}}{2!}+\frac{\left(\lambda e^{t}\right)^{3}}{3!}+\cdots\right] \\
& =e^{-\lambda} e^{\lambda e^{t}}=e^{-\lambda+\lambda \epsilon^{t}} \because 1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots=e^{x}
\end{aligned}
$$

$$
M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}
$$

To find the mean and variance of :

$$
\begin{aligned}
\text { Mean } E(X) & =\left[\frac{d}{d t}\left[M_{X}(t)\right]\right]_{t=0} \\
& =\left[\frac{d}{d t}\left[e^{\lambda\left(e^{t}-1\right)}\right]\right]_{t=0} \\
& =\left[e^{\lambda\left(e^{t}-1\right)} \lambda\left(e^{t}\right)\right]_{t=0} \\
& =e^{\lambda\left(e^{0}-1\right)} \lambda e^{0}=e^{0} \lambda
\end{aligned}
$$

Mean $=\lambda$

$$
E\left(X^{2}\right)=\left[\frac{d^{2}}{d t^{2}}\left[M_{X}(t)\right]\right]_{t=0}
$$

$$
=\left[\frac{d^{2}}{d t^{2}}\left[e^{\lambda\left(e^{t}-1\right)}\right]\right]_{t=0}
$$

$$
\begin{aligned}
& =\left[\frac{d}{d t}\left[e^{\lambda\left(e^{t}-1\right)} \lambda e^{t}\right]\right]_{t=0} \\
& =\lambda\left[\frac{d}{d t}\left[e^{\lambda\left(e^{t}-1\right)+t}\right]\right]_{t=0} \\
& =\lambda\left[e^{\lambda\left(e^{t}-1\right)+t}\left(\lambda e^{t}+1\right)\right]_{t=0} \\
& =\lambda\left[e^{0}(\lambda+1)\right] \\
& =\lambda(\lambda+1)
\end{aligned}
$$

$$
E\left(X^{2}\right)=\lambda^{2}+\lambda
$$

$$
\text { Variance }=E\left(X^{2}\right)-[E(X)]^{2}
$$

$$
=\lambda^{2}+\lambda-\lambda^{2}
$$

Variance $=\lambda$

Problems based on Poisson Distribution:

1. Write down the probability mass function of the Poisson distribution which is approximately equivalent to $\mathbf{B}(100,0.02)$

Solution:

Given $n=1000, p=0.02$

$$
\lambda=n p=100 \times 0.02=2
$$

The probability mass function of the Poisson distribution

$$
\begin{aligned}
P(x)= & \frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots, \infty \\
& =\frac{e^{-2} 2^{x}}{x!} ; x=0,1,2, \ldots, \infty
\end{aligned}
$$

2. One percent of jobs arriving at a computer system need to wait until weekends for scheduling, owing to core - size limitations. Find the probability that among a sample of $\mathbf{2 0 0}$ jobs there are no jobs hat have to wait until weekends.

Solution:

Given $n=200, \mathrm{p}=0.01$

$$
\lambda=n p=200 \times 0.01=2
$$

The Poisson distribution is

$$
P(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} ; x=0,1,2, \ldots, \infty
$$

$\mathrm{P}($ no jobs to wait until weekends $)=P(X=0)$

$$
P(X=0)=\frac{e^{-2} 2^{0}}{0!}=e^{-2}=0.1353
$$

3. The proofs of a 500 pages book containing 500 misprints. Find the probability that there are atleast 4 misprints in a randomly chosen page.

Solution:

Given $n=500$
$\mathrm{p}=\mathrm{P}($ getting a misprint in a given page $)=\frac{1}{500}$

$$
\lambda=n p=500 \times \frac{1}{500}=1
$$

The Poisson distribution is

$$
P(X \geq 4)=1-P(X<4)
$$

$$
=1-[P(X=0)+P(X=1)]+P(X=2)+P(X=3)
$$

$$
=1-\left[\frac{e^{-1} 1^{0}}{0!}+\frac{e^{-1} 1^{1}}{1!}+\frac{e^{-1} 1^{2}}{2!}+\frac{e^{-1} 1^{3}}{3!}\right]
$$

$$
=1-e^{-1}\left[1+1+\frac{1}{2}+\frac{1}{6}\right]
$$

$$
=1-0.3679[2.666]
$$

$$
=1-0.9809
$$

$$
=0.0192
$$

