
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401 ALGORITHMS

KNAPSACK PROBLEM
Let us now discuss how we can apply the branch-and-bound technique to solving

the knapsack problem. Given n items of known weights wiand values vi,i = 1, 2, . . . , n,

and a knapsack of capacity W, find the most valuable subset of the items that fit in the

knapsack. It is convenient to order the items of a given instance in descending order by

their value-to-weight ratios. Then the first item gives the best payoff per weight unit and

the last one gives the worst payoff per weight unit, with ties resolved arbitrarily:

v1/w1 ≥ v2/w2 ≥ . . . ≥vn/wn.

It is natural to structure the state-space tree for this problem as a binary tree

constructed as follows. Each node on the ith level of this tree, 0 ≤ i ≤ n, represents all the

subsets of n items that include a particular selection made from the first i ordered items.

This particular selection is uniquely determined by the path from the root to the node: a

branch going to the left indicates the inclusion of the next item, and a branch going to the

right indicates its exclusion. We record the total weight w and the total value v of this

selection in the node, along with some upper bound ub on the value of any subset that

can be obtained by adding zero or more items to thisselection.

Item Weight Value value / weight capacity

1 4 $40 10

W = 10
2 7 $42 6

3 5 $25 5

4 3 $12 4

w=19 v=119 vi+1/wi+1=25

A simple way to compute the upper bound ub is to add to v, the total value of the

items already selected, the product of the remaining capacity of the knapsack W − w and

the best per unit payoff among the remaining items, which is vi+1/wi+1:

ub = v + (W − w)(vi+1/wi+1).

= 0+(10-0) (10)=100



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401 ALGORITHMS

FIGURE State-space tree of the best-first branch-and-bound algorithm for the instance of
the knapsack problem.

At the root of the state-space tree no items have been selected as yet. Hence, both
the total weight of the items already selected w and their total value v are equal to 0. The
value of the upper bound computed by formula (12.1) is $100. Node 1, the left child of
the root, represents the subsets that include item 1. The total weight and value of the
items already included are 4 and $40, respectively; the value of the upper bound is 40 +
(10 − 4) * 6 = $76. Node
2representsthesubsetsthatdonotincludeitem1.Accordingly,w=0,v=$0,andub=0+(10−
0) * 6 = $60. Since node 1 has a larger upper bound than the upper bound of node 2, it is
more promising for this maximization problem, and we branch from node 1 first. Its
children—nodes 3 and 4—represent subsets with item 1 and with and without item 2,
respectively.

Since the total weight w of every subset represented by node 3 exceeds the knapsack’s
capacity, node 3 can be terminated immediately. Node 4 has the same values of w and v
as its parent; the upper bound ub is equal to 40 + (10 − 4) * 5 = $70. Selecting node 4
over node 2 for the next branching (why?), we get nodes 5 and 6 by respectively
including and excluding item 3. The total weights and values as well as the upper bounds



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS3401 ALGORITHMS

for these nodes are computed in the same way as for the preceding nodes. Branching
from node 5 yields node 7, which represents no feasible solutions, and node 8, which
represents just a single subset {1, 3} of value $65. The remaining live
nodes2and6havesmallerupper-boundvaluesthanthevalueofthesolutionrepresentedbynode
8. Hence, both can be terminated making the subset {1, 3} of node 8 the optimal solution
to the problem.

Solving the knapsack problem by a branch-and-bound algorithm has a rather
unusual characteristic. Typically, internal nodes of a state-space tree do not define a
point of the problem’s search space, because some of the solution’s components remain
undefined. If we had done this for the instance investigated above, we could have
terminated nodes 2 and 6 before node 8 was generated because they both are inferior to
the subset of value $65 of node 5.


