
 

 

 
 

RSA – Algorithm 

 
Definition: 

 
Block cipher asymmetric algorithm developed by Rivest, Shamir & 

Adleman .
 
It is the best known & widely used public-key scheme and 

based on exponentiation in a finite (Galois) field over integers modulo 

a prime. Its security due to cost of factoring large numbers
 

 

 Factorization takes O(e 
log n log log n

) operations (hard) 
 
 

Each user will be provided with pair of keys one of which is public 

key used for encryption and the other is private used for 

decryption.
 
Plaintext and cipher text are integers between 0 and n – 

1 for some n. (eg . 1024 bits)  

 

 
Ingredients of RSA Algorithm

 



 

The ingredients are the following: 

  

p, q, two prime numbers 

n = pq  
 e, with gcd( ᶲ (n),e) = 1;   

1 < e <ᶲ(n)  

 d≡ e-1(mod ᶲ (n)) 

 
 

(private, chosen) 

(public, calculated)  
(public, chosen)  
(private, calculated) 



 

 

 
RSA Key Setup: 

 

This key setup is done once (rarely) when a user establishes (or replaces) 

their public key.  

1. Each user generates a public/private key pair by: selecting two 

large primes at random - p, q  

2. Computing their system modulus N=p .q 

3. ø (N)= (p-1)  (q-1) 

4. Selecting at random the encryption key e where 1< e < ø(N), gcd 

(e ,ø (N)) =1 

5. Solve following equation to find decryption key d  

e. d=1 mod ø(N)  

 
6. Publish their public encryption key:   KU = {e, N} 

 
7. Keep secret private decryption key: KR = {d, 

p, q}  
 

RSA Use 
8. To encrypt a message M the sender: 

 
 obtains public key of recipient KU={e ,N} 
 computes:  C=M

e
 mod N, where 0 ≤ M  < N 

 
9. To decrypt the ciphertext C the owner: 



 uses their private key KR={d,p,q}



 computes: M=C
d
 mod N





Example: 
 

1. Select primes: p=17 & q=11 
 

2. Compute n = pq =17×11=187 
 

3. Compute ø(n)=(p–1)(q-1)=16×10=160 
 

4. Select e : gcd(e,160)=1; choose e=7 
 



 

 

5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 

23×7=161 
 

6. Publish public key KU={7,187} 
 

7. Keep secret private key KR={23,17,11} 
 

8. Given message M = 88 ( 88<187) 
 

9. Encryption:C = 88
7
 mod 187 = 11  

 
 
 
 
 
 
 
 
 
 
 

 

88
7
 mod 187 = [(88

4
 mod 187) x (88

2
 mod 187) x (88

1
 mod 187)] mod 187 

 

88
1
 mod 187 = 88  

 

88
2
 mod 187 = 7744 mod 187 = 77 

 

88
4
 mod 187 = 59969536 mod 187 = 132 

 

88
7
 mod 187 = (88 x 77 x 132 ) mod 187 

 

= 894432 mod 187 = 11 
 

10. Decryption: M = 11
23

 mod 187 = 88   

Note : Finding private key d ( ie) multiplicative inverse of e 
–
 

1
 using 

extended Euclidean algorithm) ie) d ≡ e 
–
 
1
 mod ᶲ(n) 

 

d* e ≡ 1 mod ᶲ(n) Here d * 3 ≡ 1 mod 160 
 

According Extended Euclidean algorithm initial values 
 

A1 = 

1 A2 = 0 

A3 = 

160 

B1 = 0 B2 = 1 B3 = 7 
 

Find Q = └ A3/B3┘ ( take lowest nearest integer) 



 

 

 

Then A1 = B1 ; A2= B2 ; A3 = B3 
 

B1 = A1+QB1 ; B2 = A2+QB2; B3 = A3-QB3 
 

 Q A1  A2 A3 B1 B2  B3  
            

  1  0 160 0 1 7   
            

 22 0  1 7 1 22 6   
           

 1 1  22 6 1 23  1   
            

   

        

  
 

Since B3 = 1 ;  

 

Multiplicative inverse  B2 = 23 

d * 3 ≡ 1 mod 160       

23 * 7 ≡ 1 mod 160  

 d = 23 

Computational aspects of RSA 
 

This includes i) Encryption / decryption ii) Key generation. 
 

Both encryption and decryption in RSA involve raising an integer to an integer 
power, mod n. we can make use of a property of modular arithmetic: [(a mod n) x 
(b mod n)] mod n = (a x b) mod n 
 

Efficient Operation Using the Public Key 
 



 

 

To speed up the operation of the RSA algorithm using the public key, a specific 

choice of e is usually made. The most common choice is 65537 two other popular 

choices are 3 and 17. 
 
Key generation : 
 

Each participant must generate a pair of keys. 
 

This involves the following tasks: 

 

● Determining two prime numbers, p and q 
 

● Selecting either e or d and calculating the other 
 

 

1. Pick an odd integer n at random (e.g., using a pseudorandom number 

generator). 
 

2. Pick an integer a < n at random. 
 

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as 

a parameter. If n fails the test, reject the value n and go to step 1. 
 

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2. 
 

 

 


