

RSA – Algorithm

Definition:

Block cipher asymmetric algorithm developed by Rivest, Shamir &

Adleman .

It is the best known & widely used public-key scheme and

based on exponentiation in a finite (Galois) field over integers modulo

a prime. Its security due to cost of factoring large numbers

 Factorization takes O(e
log n log log n

) operations (hard)

Each user will be provided with pair of keys one of which is public

key used for encryption and the other is private used for

decryption.

Plaintext and cipher text are integers between 0 and n –

1 for some n. (eg . 1024 bits)

Ingredients of RSA Algorithm



The ingredients are the following:

p, q, two prime numbers

n = pq
 e, with gcd(ᶲ (n),e) = 1;

1 < e <ᶲ(n)

 d≡ e-1(mod ᶲ (n))

(private, chosen)

(public, calculated)
(public, chosen)
(private, calculated)

RSA Key Setup:

This key setup is done once (rarely) when a user establishes (or replaces)

their public key.

1. Each user generates a public/private key pair by: selecting two

large primes at random - p, q

2. Computing their system modulus N=p .q

3. ø (N)= (p-1) (q-1)

4. Selecting at random the encryption key e where 1< e < ø(N), gcd

(e ,ø (N)) =1

5. Solve following equation to find decryption key d

e. d=1 mod ø(N)

6. Publish their public encryption key: KU = {e, N}

7. Keep secret private decryption key: KR = {d,

p, q}

RSA Use
8. To encrypt a message M the sender:

 obtains public key of recipient KU={e ,N}
 computes: C=M

e
 mod N, where 0 ≤ M < N

9. To decrypt the ciphertext C the owner:



 uses their private key KR={d,p,q}



 computes: M=C
d
 mod N





Example:

1. Select primes: p=17 & q=11

2. Compute n = pq =17×11=187

3. Compute ø(n)=(p–1)(q-1)=16×10=160

4. Select e : gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since

23×7=161

6. Publish public key KU={7,187}

7. Keep secret private key KR={23,17,11}

8. Given message M = 88 (88<187)

9. Encryption:C = 88
7
 mod 187 = 11

88
7
 mod 187 = [(88

4
 mod 187) x (88

2
 mod 187) x (88

1
 mod 187)] mod 187

88
1
 mod 187 = 88

88
2
 mod 187 = 7744 mod 187 = 77

88
4
 mod 187 = 59969536 mod 187 = 132

88
7
 mod 187 = (88 x 77 x 132) mod 187

= 894432 mod 187 = 11

10. Decryption: M = 11
23

 mod 187 = 88

Note : Finding private key d (ie) multiplicative inverse of e
–

1
 using

extended Euclidean algorithm) ie) d ≡ e
–

1
 mod ᶲ(n)

d* e ≡ 1 mod ᶲ(n) Here d * 3 ≡ 1 mod 160

According Extended Euclidean algorithm initial values

A1 =

1 A2 = 0

A3 =

160

B1 = 0 B2 = 1 B3 = 7

Find Q = └ A3/B3┘ (take lowest nearest integer)

Then A1 = B1 ; A2= B2 ; A3 = B3

B1 = A1+QB1 ; B2 = A2+QB2; B3 = A3-QB3

 Q A1 A2 A3 B1 B2 B3

 1 0 160 0 1 7

 22 0 1 7 1 22 6

 1 1 22 6 1 23 1

Since B3 = 1 ;

Multiplicative inverse B2 = 23

d * 3 ≡ 1 mod 160

23 * 7 ≡ 1 mod 160

 d = 23

Computational aspects of RSA

This includes i) Encryption / decryption ii) Key generation.

Both encryption and decryption in RSA involve raising an integer to an integer
power, mod n. we can make use of a property of modular arithmetic: [(a mod n) x
(b mod n)] mod n = (a x b) mod n

Efficient Operation Using the Public Key

To speed up the operation of the RSA algorithm using the public key, a specific

choice of e is usually made. The most common choice is 65537 two other popular

choices are 3 and 17.

Key generation :

Each participant must generate a pair of keys.

This involves the following tasks:

● Determining two prime numbers, p and q

● Selecting either e or d and calculating the other

1. Pick an odd integer n at random (e.g., using a pseudorandom number

generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as

a parameter. If n fails the test, reject the value n and go to step 1.

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

