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 CONCURRENCY CONTROL 
 Concurrency  control  in  distributed  systems  is  achieved  by  a  program  which  is 

 called  scheduler.  Schedulers  help  to  order  the  operations  of  transactions  in  such  a  way 
 that  the  resulting  logs  are  serializable.  There  are  two  types  of  the  concurrency  control  that 
 are locking approach and non-locking approach. 
 Various Approaches For Concurrency Control. 
 1. Locking Based Concurrency Control Protocols 

 A  lock  is  a  variable  associated  with  a  data  item  that  determines  whether  read/write 
 operations  can  be  performed  on  that  data  item.  Locking-based  concurrency  control 
 systems can use either one-phase or two-phase locking protocols. 

 1.  One-phase  Locking  Protocol:  In  this  method,  each  transaction  locks  an  item 
 before  use  and  releases  the  lock  as  soon  as  it  has  finished  using  it.  This  locking 
 method  provides  for  maximum  concurrency  but  does  not  always  enforce 
 serializability. 

 2.  Two-phase  Locking  Protocol  :  The  transaction  comprises  two  phases.  In  the  first 
 phase,  a  transaction  only  obtains  all  the  locks  it  needs  and  does  not  release  any 
 lock.  This  is  called  the  expanding  or  the  growing  phase  .  In  the  second  phase,  the 
 transaction  releases  the  locks  and  cannot  request  any  new  locks.  This  is  called  the 
 shrinking phase  . 
 Every  transaction  that  follows  a  two-phase  locking  protocol  is  guaranteed  to  be 

 serializable. 
 2. Timestamp Concurrency Control Algorithms: 

 Timestamp-based  concurrency  control  algorithms  use  a  transaction’s  timestamp  to 
 coordinate  concurrent  access  to  a  data  item  to  ensure  serializability.  A  timestamp  is  a 
 unique  identifier  given  by  DBMS  to  a  transaction  that  represents  the  transaction’s  start 
 time. 

 These  algorithms  ensure  that  transactions  are  committed  in  the  order  dictated  by 
 their  timestamps.  An  older  transaction  should  commit  before  a  younger  transaction,  since 
 the older transaction enters the system before the younger one. 

 Timestamp-based  concurrency  control  techniques  generate  serializable  schedules 
 such  that  the  equivalent  serial  schedule  is  arranged  in  order  of  the  age  of  the  participating 
 transactions. 



 3. Optimistic Concurrency Control Algorithm: 
 In  systems  with  low  conflict  rates,  the  task  of  validating  every  transaction  for 

 serializability  may  lower  performance.  In  these  cases,  the  test  for  serializability  is 
 postponed  to  just  before  commit.  Since  the  conflict  rate  is  low,  the  probability  of  aborting 
 transactions  which  are  not  serializable  is  also  low.  This  approach  is  called  optimistic 
 concurrency control technique. 

 In  this  approach,  a  transaction’s  life  cycle  is  divided  into  the  following  three 
 phases − 
 ●  Execution  Phase  −  A  transaction  fetches  data  items  to  memory  and  performs 

 operations upon them. 
 ●  Validation  Phase  −  A  transaction  performs  checks  to  ensure  that  committing  its 

 changes to the database passes serializability tests. 
 ●  Commit  Phase  −  A  transaction  writes  back  modified  data  items  in  memory  to  the 

 disk. 
 Problems  arise  in  a  distributed  DBMS  environment  for  concurrency  control  and 

 recovery  purposes  that  are  not  encountered  in  a  centralized  DBMS  environment.  These 
 include the following: 

 ●  Dealing  with  multiple  copies  of  the  data  items  .  The  concurrency  control  method 
 is  responsible  for  maintaining  consistency  among  these  copies.  The  recovery 
 method  is  responsible  for  making  a  copy  consistent  with  other  copies  of  the  site  on 
 which fails and recovers later. 

 ●  Failure  of  individual  sites  .  The  DDBMS  should  continue  to  operate  with  its 
 running  sites,  even  when  one  or  more  individual  sites  fail.  When  a  site  recovers, 
 its local database must be updated the same as the rest of the sites. 

 ●  Failure  of  communication  links  .  The  system  must  be  able  to  deal  with  the  failure 
 of  one  or  more  communication  links  that  connect  the  sites.  An  extreme  case  of  this 
 problem  is  that  network  partitioning  may  occur.  This  breaks  up  the  sites  into  two 
 or  more  partitions,  where  the  sites  within  each  partition  can  communicate  only 
 with one another and not with sites in other partitions. 

 ●  Distributed  commit  .  Problems  can  arise  with  committing  a  transaction  that  is 
 accessing  databases  stored  on  multiple  sites  if  some  sites  fail  during  the  commit 
 process. The two-phase commit protocol is often used to deal with this problem. 

 ●  Distributed  deadlock  .  Deadlock  may  occur  among  several  sites,  so  techniques  for 
 dealing with deadlocks must be extended to take this into account. 

 Techniques to deal with recovery and concurrency control in DDBMSs: 
 1. Distributed Concurrency Control Based on a Distinguished Copy of a Data Item 



 The  idea  is  to  designate  a  particular  copy  of  each  data  item  as  a  distinguished 
 copy.  The  locks  for  this  data  item  are  linked  with  the  distinguished  copy,  and  the  locking 
 and  unlocking  requests  are  sent  to  the  site  that  contains  that  copy.  The  distinguished 
 copies are chosen based on four methods. They are, 

 1. Primary Site Technique 
 2. Primary Site with Backup Site 
 3. Primary Copy Technique 
 4. Choosing a New Coordinator Site in Case of Failure 

 1. Primary Site Technique: 
 In  this  method,  a  single  primary  site  is  designated  to  be  the  coordinator  site  for  all 

 database  items.  All  locks  are  kept  at  that  site,  and  all  requests  for  locking  or  unlocking  are 
 sent  there.  This  method  is  thus  an  extension  of  the  centralized  locking  approach.  If  all 
 transactions follow the two-phase locking protocol, serializability is guaranteed. 

 The  advantage  is  -  it  is  a  simple  extension  of  the  centralized  approach  and  thus  is 
 not much complex. 
 Disadvantages are 

 ●  All  locking  requests  are  sent  to  a  single  site,  which  leads  to  overloading  that  site 
 and causing a system bottleneck. 

 ●  Failure  of  the  primary  site  paralyzes  the  system,  since  all  locking  information  is 
 kept at that site. 
 This  can  limit  system  reliability  and  availability.  All  locks  are  accessed  at  the 

 primary site, the items can be accessed at any site at which they reside. 
 If  a  transaction  obtains  a  Read_lock  on  a  data  item  from  the  primary  site,  it  can 

 access any copy of that data item. 
 If  a  transaction  obtains  a  Write_lock  and  updates  a  data  item,  the  DDBMS  is 

 responsible for updating all copies of the data item before releasing the lock. 
 2. Primary Site with Backup Site: 

 This  approach  designates  a  second  site  to  be  a  backup  site.  All  locking  information 
 is  maintained  at  both  the  primary  and  the  backup  sites.  In  case  of  primary  site  failure,  the 
 backup  site  takes  over  as  the  primary  site,  and  a  new  backup  site  is  chosen  and  the  lock 
 status information is copied to that site. 

 It  simplifies  the  process  of  recovery  of  the  primary  site.  It  slows  down  the  process 
 of  obtaining  locks,  because  all  lock  requests  and  granting  of  locks  must  be  recorded  at 
 both  the  primary  and  the  backup  sites  before  a  response  is  sent  to  the  requesting 
 transaction.  The  primary  and  backup  sites  become  overloaded  with  requests  and  slow 
 down the system. 
 3. Primary Copy Technique: 



 This  method  attempts  to  distribute  the  load  of  lock  coordination  among  various 
 sites  by  having  the  distinguished  copies  of  different  data  items  stored  at  different  sites. 
 Failure  of  one  site  affects  the  transactions  that  are  accessing  locks  on  items  whose 
 primary  copies  reside  at  that  site,  but  other  transactions  are  not  affected.  This  method  can 
 also use backup sites to enhance reliability and availability. 
 4. Choosing a New Coordinator Site in Case of Failure: 

 Whenever  a  coordinator  site  fails,  the  sites  that  are  still  running  must  choose  a  new 
 coordinator.  In  the  case  of  the  primary  site  approach  with  no  backup  site,  all  executing 
 transactions  must  be  aborted  and  restarted  in  a  recovery  process.  The  recovery  process 
 involves  choosing  a  new  primary  site  and  creating  a  lock  manager  process  and  a  record  of 
 all lock information at that site. 

 For  methods  that  use  backup  sites,  transaction  processing  is  suspended  while  the 
 backup  site  is  designated  as  the  new  primary  site  and  a  new  backup  site  is  chosen  and  the 
 lock  status  information  is  copied  to  that  site.  If  a  backup  site  X  is  about  to  become  the 
 new  primary  site,  X  can  choose  the  new  backup  site  from  among  the  system’s  running 
 sites.  However,  if  no  backup  site  existed,  or  if  both  the  primary  and  the  backup  sites  are 
 down, a process called election can be used to choose the new coordinator site. 

 In  this  process,  any  site  Y  that  attempts  to  communicate  with  the  coordinator  site 
 repeatedly  and  fails  to  do  so,  can  assume  that  the  coordinator  is  down  and  can  start  the 
 election  process  by  sending  a  message  to  all  running  sites  proposing  that  Y  become  the 
 new  coordinator.  As  soon  as  Y  receives  a  majority  of  yes  votes,  Y  can  declare  that  it  is 
 the new coordinator. 
 2. Distributed Concurrency Control Based on Voting 

 In  the  voting  method,  there  is  no  distinguished  copy;  rather,  a  lock  request  is  sent 
 to  all  sites  that  includes  a  copy  of  the  data  item.  Each  copy  maintains  its  own  lock  and 
 can  grant  or  deny  the  request  for  it.  If  a  transaction  that  requests  a  lock  is  granted  by  a 
 majority  of  the  copies,  it  holds  the  lock  and  informs  all  copies  that  it  has  been  granted  the 
 lock.  If  a  transaction  does  not  receive  a  majority  of  votes  granting  it  a  lock  within  a 
 certain time-out period, it cancels its request and informs all sites of the cancellation. 

 The  voting  method  is  considered  a  truly  distributed  concurrency  control  method, 
 since the responsibility for a decision resides with all the sites involved. 
 3. Distributed Recovery 

 In  some  cases  it  is  difficult  even  to  determine  whether  a  site  is  down  without 
 exchanging  numerous  messages  with  other  sites.  For  example,  suppose  that  site  X  sends  a 
 message  to  site  Y  and  expects  a  response  from  Y  but  does  not  receive  it.  There  are 
 several possible explanations: 

 ●  The message was not delivered to Y because of communication failure. 



 ●  Site Y is down and could not respond. 
 ●  Site Y is running and sent a response, but the response was not delivered. 

 Without additional information or the sending of additional messages, it is difficult 
 to determine what actually happened. 

 Another  problem  with  distributed  recovery  is  distributed  commit.  When  a 
 transaction  is  updating  data  at  several  sites,  it  cannot  commit  until  it  is  sure  that  the  effect 
 of  the  transaction  on  every  site  cannot  be  lost.  This  means  that  every  site  must  first  have 
 recorded  the  local  effects  of  the  transactions  permanently  in  the  local  site  log  on  disk.  The 
 two-phase commit protocol is often used to ensure the correctness of distributed commits. 

 QUERY PROCESSING 
 A distributed database query is processed in stages as follows: 

 1.  Query Mapping: 
 ●  The input query on distributed data is specified using a query language. 
 ●  It is then translated into an algebraic query on global relations. 
 ●  This  translation  is  referred  to  as  a  global  conceptual  schema.  Hence,  this 

 translation is mostly identical to the one performed in a centralized DBMS. 
 ●  It  is  first  normalized,  analyzed  for  semantic  errors,  simplified,  and  finally 

 restructured into an algebraic query. 
 2.  Localization: 

 ●  In  a  distributed  database,  fragmentation  results  in  fragments  or  relations 
 being stored in separate sites, with some fragments replicated. 

 ●  This  stage  maps  the  distributed  query  on  the  global  schema  to  separate 
 queries  on  individual  fragments  using  data  distribution  and  replication 
 information. 

 3.  Global Query Optimization. 
 ●  Optimization  consists  of  selecting  a  strategy  from  a  list  of  candidates  that  is 

 closest to optimal. 
 ●  A  list  of  candidate  queries  can  be  obtained  by  permuting  the  ordering  of 

 operations within a fragment query generated by the previous stage. 
 ●  Time is the preferred unit for measuring cost. 
 ●  The  total  cost  is  a  weighted  combination  of  costs  such  as  CPU  cost,  I/O 

 costs, and communication costs. 
 4.  Local Query Optimization. 

 ●  This stage is common to all sites in the DDB. 
 ●  The techniques are similar to those used in centralized systems. 



 ●  The  first  three  stages  discussed  above  are  performed  at  a  central  control 
 site, whereas the last stage is performed locally. 

 Data Transfer Costs of Distributed Query Processing 
 In a distributed system, the complicating factors in query processing are, 

 ●  The cost of transferring data over the network  . 
 ●  The goal of reducing the amount of data transfer 

 The  EMPLOYEE  and  DEPARTMENT  relations  are  distributed  at  two  sites  as 
 shown in Figure. 

 We  will  assume  in  this  example  that  neither  relation  is  fragmented.  According  to 
 Figure,  the  size  of  the  EMPLOYEE  relation  is  100  *  10,000  =  106  bytes,  and  the  size  of 
 the DEPARTMENT relation is 35 * 100 = 3,500 bytes. 

 Consider  the  query  Q:  For  each  employee,  retrieve  the  employee  name  and  the 
 name  of  the  department  for  which  the  employee  works.  This  can  be  stated  as  follows  in 
 the relational algebra: 

 Q: π  Fname,Lname,Dname  (EMPLOYEE ⋈  Dno=Dnumber  DEPARTMENT) 
 The  result  of  this  query  will  include  10,000  records.  The  query  is  submitted  at  a 

 distinct site 3. There are three simple strategies for executing this distributed query: 
 1.  Transfer  both  the  EMPLOYEE  and  the  DEPARTMENT  relations  to  the  result  site, 

 and  perform  the  join  at  site  3.  In  this  case,  a  total  of  1,000,000  +  3,500  =  1,003,500 
 bytes must be transferred. 

 2.  Transfer  the  EMPLOYEE  relation  to  site  2,  execute  the  join  at  site  2,  and  send  the 
 result  to  site  3.  The  size  of  the  query  result  is  40  *  10,000  =  400,000  bytes,  so 
 400,000 + 1,000,000 = 1,400,000 bytes must be transferred. 



 3.  Transfer  the  DEPARTMENT  relation  to  site  1,  execute  the  join  at  site  1,  and  send 
 the  result  to  site  3.  In  this  case,  400,000  +  3,500  =  403,500  bytes  must  be 
 transferred. 
 If  minimizing  the  amount  of  data  transfer  is  the  optimization  criterion,  we  should 

 choose strategy 3. 
 Now  consider  another  query  Q′:  For  each  department,  retrieve  the  department 

 name  and  the  name  of  the  department  manager.  This  can  be  stated  as  follows  in  the 
 relational algebra: 

 Q′: π  Fname,Lname,Dname  (DEPARTMENT⋈  Mgr_ssn=Ssn  EMPLOYEE) 
 Again,  suppose  that  the  query  is  submitted  at  site  3.  The  same  three  strategies  for 

 executing  query  Q  apply  to  Q′,  except  that  the  result  of  Q′  includes  only  100  records, 
 assuming that each department has a manager: 

 1.  Transfer  both  the  EMPLOYEE  and  the  DEPARTMENT  relations  to  the  result  site, 
 and  perform  the  join  at  site  3.  In  this  case,  a  total  of  1,000,000  +  3,500  =  1,003,500 
 bytes must be transferred. 

 2.  Transfer  the  EMPLOYEE  relation  to  site  2,  execute  the  join  at  site  2,  and  send  the 
 result  to  site  3.  The  size  of  the  query  result  is  40  *  100  =  4,000  bytes,  so  4,000  + 
 1,000,000 = 1,004,000 bytes must be transferred. 

 3.  Transfer  the  DEPARTMENT  relation  to  site  1,  execute  the  join  at  site  1,  and  send 
 the result to site 3. In this case, 4,000 + 3,500 = 7,500 bytes must be transferred. 
 Again,  we  would  choose  strategy  3—this  time  by  an  overwhelming  margin  over 

 strategies  1  and  2.  The  preceding  three  strategies  are  the  most  obvious  ones  for  the  case 
 where  the  result  site  (site  3)  is  different  from  all  the  sites  that  contain  files  involved  in  the 
 query  (sites  1  and  2).  However,  suppose  that  the  result  site  is  site  2;  then  we  have  two 
 simple strategies: 

 1.  Transfer  the  EMPLOYEE  relation  to  site  2,  execute  the  query,  and  present  the 
 result  to  the  user  at  site  2.  Here,  the  same  number  of  bytes—1,000,000—must  be 
 transferred for both Q and Q′. 

 2.  Transfer  the  DEPARTMENT  relation  to  site  1,  execute  the  query  at  site  1,  and 
 send  the  result  back  to  site  2.  In  this  case  400,000  +  3,500  =  403,500  bytes  must  be 
 transferred for Q and 4,000 + 3,500 = 7,500 bytes for Q′. 
 A  more  complex  strategy,  which  sometimes  works  better  than  these  simple 

 strategies, uses an operation called semijoin. 
 Distributed Query Processing Using Semijoin 

 ●  Distributed  query  processing  uses  the  semijoin  operation  to  reduce  the  number  of 
 tuples in a relation before transferring it to another site. 



 ●  Joining  is  done  by  sending  the  column  of  one  relation  R  to  the  site  where  the  other 
 relation S is located. 

 ●  The  join  attributes  and  the  attributes  required  in  the  result,  are  projected  out  and 
 shipped back to the original site and joined with R. 

 ●  Hence,  only  the  joining  column  of  R  is  transferred  in  one  direction,  and  a  subset  of 
 S  with  no  irrelevant  tuples  or  attributes  is  transferred  in  the  other  direction.  This 
 can be an efficient solution to minimizing data transfer. 

 Consider the following strategy for executing Q or Q′: 
 1.  Project  the  join  attributes  of  DEPARTMENT  at  site  2,  and  transfer  them  to  site. 

 For  Q,  we  transfer  F  =  π  Dnumber  (DEPARTMENT)  ,  whose  size  is  4  *  100  =  400 
 bytes,  whereas  for  Q′,  we  transfer  F′  =  π  Mgr_ssn  (DEPARTMENT)  ,  whose  size  is  9 
 * 100 = 900 bytes. 

 2.  Join  the  transferred  file  with  the  EMPLOYEE  relation  at  site  1,  and  transfer  the 
 required attributes from the resulting file to site 2. For Q, we transfer 

 R = π  Dno, Fname, Lname  (F⋉  Dnumber=Dno  EMPLOYEE)  , 
 whose size is 34 * 10,000 = 340,000 bytes, whereas for Q′, we transfer 
 R′ = π  Mgr_ssn, Fname, Lname  (F′⋉  Mgr_ssn=Ssn  EMPLOYEE)  , 
 whose size is 39 * 100 = 3,900 bytes. 

 3.  Execute  the  query  by  joining  the  transferred  file  R  or  R′  with  DEPARTMENT, 
 and present the result to the user at site. 
 Using  this  strategy,  we  transfer  340,400  (340,000  +  400)  bytes  for  Q  and  4,800 

 (3,900 + 900) bytes for Q′. 
 A  semijoin  operation  R  ⋉  A=B  S  ,  where  A  and  B  are  domain-compatible  attributes 

 of  R  and  S,  respectively,  produces  the  same  result  as  the  relational  algebra  expression 
 πR(R ⋉  A=B  S)  . 

 In  a  distributed  environment  where  R  and  S  reside  at  different  sites,  the  semijoin  is 
 typically  implemented  by  first  transferring  F  =  π  B  (S)  to  the  site  where  R  resides  and  then 
 joining  F  with  R,  thus  leading  to  the  strategy  discussed  here.  The  semijoin  operation  is 
 not commutative. 


