NEWTON RAPHSON METHOD

Iterative solution using Newton-Raphson method - Algorithm

Step 1: Assume a suitable solution for all buses except the slack bus.

Step 2 : Set the convergence criterion = $\epsilon 0$

Step 3 : Set iteration count K= 0

Step 4 : Set bus count P = 2

Step 5 : Calculate Pp and Qp using n

 $Pp = \Sigma \{ ep(epGpq+fpBqp)+fp(fpGpq - epBpq) \} q=1 n$

 $Qp = \Sigma \{ fp(epGpq+fpBqp)+ep(fpGpq - epBpq) \} q=1$

Step 6 :Evaluate ΔPPK = Pspec - PPK

Step 7 : Check if the bus is the question is a PV bus. If yes compare QPK with the limits.

If it exceeds the limit fix the Q value to the corresponding limit and treat the bus as PQ for that iteration and go to next step (or) if the lower limit is not violated

```
evaluate |\Delta VP| 2 = |Vspec| 2 - |VPK| 2 and go to step 9
```

Step 8: Evaluate ΔQPK = Qspec - QPK

Step 9 :Advance bus count P = P+1 and check if all buses taken in to account if not go to step 5

Step 10 : Determine the largest value of $|\Delta VP| | 2$

Step 11: If $\Delta VP < \epsilon$ go to step 16

Step 12: Evaluate the element of Jacobin matrices J1, J2, J3, J4, J5 and J6

Step 13: Calculate Δ ePK and Δ fPK

Step 14: Calculate ePK+1 = ePK + Δ ePK and fPK+1 = fPK + Δ fPK

Step 15 : Advance count (iteration) K=K+1 and go to step 4

Step 16: Evaluate bus and line power and print the result

NO

Advance bus count P= P+1

в

Evaluate $|\Delta Vp|^2 =$

 $|V_{ps}|^2 - |V_p|^2$

YES

If Qp>Qmax

Set Qpk = Qpmax

Evaluate $\Delta Q_p^K = Q_{spec} - Q_p^K$

Iterative solution using Newton-Raphson method - Flow chart

Advantages and disadvantages of N.R method

Advantages:

Faster, more reliable and results are accurate, require less number of iterations;

Disadvantages:

Program is more complex, memory is more complex.