
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

THE GENERAL SEMANTICS OF CALLS AND RETURNS

• The subprogram call and return operations of a language are together called its subprogram

linkage

• General semantics of subprogram calls

– Parameter passing methods

– Stack-dynamic allocation of local variables

– Save the execution status of calling program

– Transfer of control and arrange for the return

– If subprogram nesting is supported, access to nonlocal variables must be arranged

The General Semantics of Calls and Returns

• General semantics of subprogram returns:

– In mode and inout mode parameters must have their values returned

– Deallocation of stack-dynamic locals

– Restore the execution status

– Return control to the caller

Call Semantics

- Save the execution status of the caller

- Pass the parameters

- Pass the return address to the callee

- Transfer control to the callee

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Return Semantics

– If pass-by-value-result or out mode parameters are used, move the current values of those

parameters to their corresponding actual parameters

– If it is a function, move the functional value to a place the caller can get it

– Restore the execution status of the caller

– Transfer control back to the caller

• Required storage:

– Status information, parameters, return address, return value for functions

Parts

• Two separate parts: the actual code and the noncode part (local variables and data that can

change)

• The format, or layout, of the non-code part of an executing subprogram is called an activation

record

• An activation record instance is a concrete example of an activation record (the collection of data

for a particular subprogram activation)

An Activation Record for “Simple” Subprograms

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Code and Activation Records of a Program with “Simple” Subprograms

Implementing Subprograms with Stack-Dynamic Local Variables

• More complex activation record

– The compiler must generate code to cause implicit allocation and deallocation of local variables

– Recursion must be supported (adds the possibility of multiple simultaneous activations of a

subprogram)

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

Typical Activation Record for a Language with Stack-Dynamic Local Variables

Implementing Subprograms with Stack-Dynamic Local

Variables: Activation Record

• The activation record format is static, but its size may be dynamic

• The dynamic link points to the top of an instance of the activation record of the caller

• An activation record instance is dynamically created when a subprogram is called

• Activation record instances reside on the run-time stack

• The Environment Pointer (EP) must be maintained by the runtime system. It always points at the

base of the activation record instance of the currently executing program unit

An Example: C Function

void sub(float total, int part)

{

int list[5];

 float sum;

…

}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

An Example Without Recursion

void A(int x) {

int y;

...

C(y);

...

}

void B(float r) {

int s, t;

...

A(s);

...

}

void C(int q) {

...

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

}

void main() {

float p;

...

B(p);

...

}

main calls B B calls A A calls C

An Example Without Recursion

Dynamic Chain and Local Offset

• The collection of dynamic links in the stack at a given time is called the dynamic chain, or call

chain

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

• Local variables can be accessed by their offset from the beginning of the activation record, whose

address is in the EP.This offset is called the local_offset

• The local_offset of a local variable can be determined by the compiler at compile time

An Example With Recursion

• The activation record used in the previous example supports recursion, e.g.

int factorial (int n) {

 <-----------------------------1

 if (n <= 1) return 1;

 else return (n * factorial(n - 1));

 <-----------------------------2

 }

 void main() {

 int value;

 value = factorial(3);

 <-----------------------------3

 }

Activation Record for factorial

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CCS358-PRINCIPLES OF PROGRAMMING LANGUAGES

