
BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

o Error Handling and Debugging:
Robust error handling mechanisms are essential to ensure the reliability and
safety of the embedded system.
Techniques include exception handling, logging, and fail-safe mechanisms,
alongside debugging tools like JTAG, in-circuit emulators (ICE), and software
debuggers.

o Firmware Updates:
Firmware is the low-level software that directly controls the hardware, typically
stored in non-volatile memory.
Embedded systems often support firmware updates to fix bugs, enhance
functionality, or improve performance. These updates can be done over-the-air
(OTA) or via direct connection.

Security Considerations:
o Encryption and Authentication:

Security is critical in embedded systems, especially those connected to networks
or handling sensitive data.
Techniques include encryption (e.g., AES, RSA), secure boot, and authentication
protocols (e.g., TLS, SSL) to protect data integrity and confidentiality.

o Secure Coding Practices:
Writing secure code is essential to prevent vulnerabilities that could be exploited
by attackers.
This includes practices like input validation, proper memory management, and
the use of secure libraries and APIs.

1.8. Introduction to Harvard & Von Neumann Architectures

Overview of Computer Architectures:
o Computer architectures define how a computer system organizes its components to

process information.
o The two primary architectures in embedded systems are the Harvard and Von Neumann

architectures, each with distinct memory and data processing designs.
Von Neumann Architecture:

o Single Memory System:
In the Von Neumann architecture, a single memory space is shared by both
instructions (program code) and data.
The processor fetches instructions and data from the same memory, one at a time,
using a single bus system.

o Sequential Execution:
Instructions and data cannot be accessed simultaneously because they share the
same bus. This leads to a phenomenon known as the "Von Neumann bottleneck,"
where the CPU is idle while waiting for memory operations.
Despite this limitation, the architecture is simpler and more cost-effective, making
it popular in general-purpose computing systems.

o Flexibility:
The shared memory model allows dynamic allocation, where the same memory
location can be used for both code and data, providing flexibility in memory
usage.

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

This architecture is widely used in systems where resource optimization and cost
are critical factors.

o Example:
The traditional PC architecture is an example of a Von Neumann system, where
the CPU fetches both instructions and data from the same memory.

Harvard Architecture:
o Separate Memory Systems:

The Harvard architecture features separate memory spaces for instructions and
data, each with its own dedicated bus.
This allows simultaneous access to instructions and data, which can significantly
speed up processing by reducing the waiting time for memory access.

o Parallel Execution:
With separate buses, the processor can fetch an instruction while reading or
writing data, enabling parallel processing of data and instructions.
This parallelism is particularly beneficial in real-time embedded systems where
timing and speed are crucial.

o Increased Complexity:
While the Harvard architecture offers performance advantages, it is more complex
and expensive to implement than the Von Neumann architecture.
The complexity arises from the need to manage two separate memory spaces and
buses.

o Example:
Modern digital signal processors (DSPs) and microcontrollers often use Harvard
architecture, especially in applications like audio processing, telecommunications,
and high-speed data acquisition.

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Comparative Analysis:
o Performance:

Harvard architecture typically outperforms Von Neumann in terms of processing
speed due to its ability to execute instructions and access data simultaneously.
However, the performance advantage comes with increased cost and complexity.

o Memory Efficiency:
Von Neumann architecture is more memory-efficient, especially in systems with
limited resources, since it uses a single memory for both code and data.
In contrast, Harvard architecture may require more memory, as code and data are
stored separately, potentially leading to underutilization of memory resources.

o Use Cases:
Von Neumann: Preferred in applications where cost and simplicity are more
important than processing speed, such as in basic microcontrollers and simple
embedded systems.
Harvard: Chosen for high-performance embedded systems, particularly those
requiring fast and real-time data processing, such as in advanced automotive
control systems, digital signal processing, and high-speed network devices.

1.9. CISC & RISC Architectures

Introduction to Instruction Set Architectures (ISA):
o The Instruction Set Architecture (ISA) defines the set of instructions that a processor can

execute, along with the hardware implementation of these instructions.
o There are two primary types of ISAs: Complex Instruction Set Computing (CISC) and

Reduced Instruction Set Computing (RISC).
CISC Architecture:

o Complex Instruction Set:

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

CISC processors are designed to execute a large number of complex
instructions, some of which may perform multiple low-level operations (e.g.,
memory access, arithmetic operations) within a single instruction.
The idea behind CISC is to reduce the number of instructions per program, thus
minimizing the number of memory accesses and simplifying compiler design.

o Variable-Length Instructions:
CISC instructions can vary in length, meaning different instructions may take
different amounts of time to execute and require varying amounts of memory.
This variability can lead to inefficiencies, such as instruction fetch and decode
stages taking longer and more power consumption.

o Microcode Implementation:
CISC processors often use microcode to implement complex instructions.
Microcode is a layer of low-level instructions or firmware that translates high-level
machine instructions into a sequence of simpler operations.
This allows for more complex instruction handling but can introduce additional
latency and complexity in the processor design.

o Examples of CISC Processors:
Intel x86 Architecture: Widely used in desktop and server processors, known
for its rich and versatile instruction set, which is backward-compatible with older
processors.
IBM System/360: An early example of a CISC architecture, designed to support
a broad range of applications with a complex set of instructions.

o Advantages:
Ease of Compilation: CISC architecture allows for more direct translation from
high-level languages to machine code, potentially reducing the complexity of
compilers.
Memory Efficiency: By using complex instructions that do more per instruction,
CISC can achieve the same task with fewer instructions, potentially reducing
memory usage.

o Disadvantages:
Performance Bottlenecks: The complexity of instructions can lead to longer
execution times, especially for those instructions that are rarely used.
Power Consumption: CISC processors tend to consume more power due to the
additional circuitry needed to handle complex instructions and the microcode
layer.

RISC Architecture:
o Reduced Instruction Set:

RISC processors are designed around a smaller, highly optimized set of
instructions. Each instruction is intended to execute in a single clock cycle,
leading to faster and more predictable execution times.
The simplicity of the instruction set is a key feature, allowing for faster instruction
decoding and execution.

o Fixed-Length Instructions:
RISC instructions are typically of fixed length, which simplifies the fetch and
decode stages of the CPU pipeline, leading to higher efficiency and faster
processing.
Fixed-length instructions also make pipelining easier, allowing for better
utilization of the CPU and faster processing speeds.

o Load/Store Architecture:
RISC architectures often use a load/store design, where memory access is
restricted to specific load and store instructions. This means data must be loaded

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

into registers before it can be manipulated, and results must be stored back into
memory afterward.
This approach simplifies the instruction set and allows for more efficient
pipelining, as memory access can be managed separately from computation.

o Examples of RISC Processors:
ARM Architecture: Widely used in mobile devices and embedded systems due
to its power efficiency and performance. ARM processors dominate the
smartphone and tablet markets.
MIPS Architecture: Common in embedded systems, networking devices, and
digital media products, known for its simplicity and performance.

o Advantages:
Performance: RISC processors can execute instructions more quickly due to
their simplified and streamlined instruction set, often leading to higher
performance, particularly in applications requiring fast computation.
Power Efficiency: With fewer transistors dedicated to executing complex
instructions, RISC processors typically consume less power, making them ideal
for battery-powered devices.

o Disadvantages:
Increased Instruction Count: More instructions may be required to perform the
same task as a CISC processor, potentially increasing program size and memory
usage.
Complex Compiler Design: The need to break down high-level operations into
simpler instructions can complicate the design of compilers, potentially increasing
development time.

RCET



BM 3551 EMBEDDED SYSTEM AND IOMT DESIGN

Comparative Analysis:
o Design Philosophy:

CISC: Aims to reduce the number of instructions per program, at the cost of
more complex hardware and potentially slower instruction execution.
RISC: Focuses on simplifying the instruction set, aiming for faster execution per
instruction, with the trade-off of requiring more instructions to complete a task.

o Use Cases:
CISC: Common in desktop computers, servers, and systems where backward
compatibility and versatile instruction sets are critical.
RISC: Ideal for embedded systems, mobile devices, and applications where
power efficiency and performance are paramount.

o Market Trends:
While CISC architectures like x86 are still dominant in certain markets, RISC
architectures (especially ARM) are becoming increasingly popular in a wide
range of devices, from smartphones to IoT devices, due to their efficiency and
adaptability.

).

ls,

RCET


