
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

BUBBLE SORT
Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based
algorithm in which each pair of adjacent elements is compared and the elements are
swapped if they are not in order. This algorithm is not suitable for large data sets as
its average and worst case complexity are of Ο(n2) where n is the number of items.

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're
keeping it short and precise.

Bubble sort starts with very first two elements, comparing them to check which one
is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we
compare 33 with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

We swap these values. We find that we have reached the end of the array. After one
iteration, the array should look like this −

To be precise, we are now showing how an array should look like after each iteration.
After the second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely
sorted.

Now we should look into some practical aspects of bubble sort.

Algorithm
We assume list is an array of n elements. We further assume that swap function
swaps the values of the given array elements.

begin BubbleSort(list)

 for all elements of list
 if list[i] > list[i+1]
 swap(list[i], list[i+1])
 end if
 end for

 return list

end BubbleSort

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

SELECTION SORT
This sorting algorithm is an in-place comparison-based algorithm in which the list is
divided into two parts, the sorted part at the left end and the unsorted part at the right end.
Initially, the sorted part is empty and the unsorted part is the entire list.
The smallest element is selected from the unsorted array and swapped with the
leftmost element, and that element becomes a part of the sorted array. This process
continues moving unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worstcase
complexities are of Ο(n2), where n is the number of items.

Consider the following depicted array as an example.

For the first position in the sorted list, the whole list is scanned sequentially. The first
position where 14 is stored presently, we search the whole list and find that 10 is the
lowest value.

So we replace 14 with 10. After one iteration 10, which happens to be the minimum
value in the list, appears in the first position of the sorted list.

For the second position, where 33 is residing, we start scanning the rest of the list in
a linear manner.

We find that 14 is the second lowest value in the list and it should appear at the
second place. We swap these values.

After two iterations, two least values are positioned at the beginning in a sorted
manner.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

The same process is applied to the rest of the items in the array.

Following is a pictorial depiction of the entire sorting process −

Algorithm
Step 1 − Set MIN to location 0
Step 2 − Search the minimum element in the list
Step 3 − Swap with value at location MIN
Step 4 − Increment MIN to point to next element
Step 5 − Repeat until list is sorted

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

INSERTION SORT

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained
which is always sorted. For example, the lower part of an array is maintained to be
sorted. An element which is to be 'insert'ed in this sorted sub-list, has to find its
appropriate place and then it has to be inserted there. Hence the name, insertion
sort.

The array is searched sequentially and unsorted items are moved and inserted into
the sorted sub-list (in the same array). This algorithm is not suitable for large data
sets as its average and worstcase complexity are of Ο(n2), where n is the number of
items.

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted
sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we
see that the sorted sub-list has only one element 14, and 27 is greater than 14.
Hence, the sorted sub-list remains sorted after swapping.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 3301 – DATA STRUCTURES

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4
items.

This process goes on until all the unsorted values are covered in a sorted sub-list. N

Algorithm
Step 1 − If it is the first element, it is already sorted. return 1;
Step 2 − Pick next element
Step 3 − Compare with all elements in the sorted sub-list
Step 4 − Shift all the elements in the sorted sub-list that is greater than the
 value to be sorted
Step 5 − Insert the value
Step 6 − Repeat until list is sorted

